• Agard, V., and K. Emanuel, 2017: Clausius–Clapeyron scaling of peak CAPE in continental convective storm environments. J. Atmos. Sci., 74, 30433054, https://doi.org/10.1175/JAS-D-16-0352.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arakawa, A., and W. H. Schubert, 1974: Interaction of a cumulus cloud ensemble with the large-scale environment, Part I. J. Atmos. Sci., 31, 674701, https://doi.org/10.1175/1520-0469(1974)031<0674:IOACCE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bolton, D., 1980: The computation of equivalent potential temperature. Mon. Wea. Rev., 108, 10461053, https://doi.org/10.1175/1520-0493(1980)108<1046:TCOEPT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and J. M. Fritsch, 2002: A benchmark simulation for moist nonhydrostatic numerical models. Mon. Wea. Rev., 130, 29172928, https://doi.org/10.1175/1520-0493(2002)130<2917:ABSFMN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and J. M. Fritsch, 2004: A reevaluation of ice–liquid water potential temperature. Mon. Wea. Rev., 132, 24212431, https://doi.org/10.1175/1520-0493(2004)132<2421:AROIWP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and M. D. Parker, 2010: Observations of a squall line and its near environment using high-frequency rawinsonde launches during VORTEX2. Mon. Wea. Rev., 138, 40764097, https://doi.org/10.1175/2010MWR3359.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and R. Rotunno, 2014: The optimal state for gravity currents in shear. J. Atmos. Sci., 71, 448468, https://doi.org/10.1175/JAS-D-13-0156.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Darkow, G. L., 1968: The total energy environment of severe storms. J. Appl. Meteor., 7, 199205, https://doi.org/10.1175/1520-0450(1968)007<0199:TTEEOS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durran, D. R., and J. B. Klemp, 1983: A compressible model for the simulation of moist mountain waves. Mon. Wea. Rev., 111, 23412361, https://doi.org/10.1175/1520-0493(1983)111<2341:ACMFTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1994: Atmospheric Convection. Oxford University Press, 588 pp.

  • Hernandez-Deckers, D., and S. C. Sherwood, 2016: A numerical investigation of cumulus thermals. J. Atmos. Sci., 73, 41174136, https://doi.org/10.1175/JAS-D-15-0385.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M., and D. A. Randall, 2003: Cloud resolving modeling of the ARM summer 1997 IOP: Model formulation, results, uncertainties, and sensitivities. J. Atmos. Sci., 60, 607625, https://doi.org/10.1175/1520-0469(2003)060<0607:CRMOTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiefer, P. J., 1941: The thermodynamic properties of water and water vapor. Mon. Wea. Rev., 69, 329332, https://doi.org/10.1175/1520-0493(1941)069<0329:TTPOWA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kreitzberg, C. W., 1964: The structure of occlusions as determined from serial ascents of vertically-directed radar. Air Force Cambridge Research Laboratory Rep. AFCRL-64-26, 121 pp.

  • Lebo, Z. J., and H. Morrison, 2015: Effects of horizontal and vertical grid spacing on mixing in simulated squall lines and implications for convective strength and structure. Mon. Wea. Rev., 143, 43554375, https://doi.org/10.1175/MWR-D-15-0154.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., and J. M. Peters, 2018: Theoretical expressions for the ascent rate of moist convective thermals. J. Atmos. Sci., 75, 16991719, https://doi.org/10.1175/JAS-D-17-0295.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., G. Thompson, and V. Tatarskii, 2009: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one and two-moment schemes. Mon. Wea. Rev., 137, 9911007, https://doi.org/10.1175/2008MWR2556.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., J. M. Peters, A. C. Varble, W. M. Hannah, and S. E. Giangrande, 2020: Thermal chains and entrainment in cumulus updrafts. Part I: Theoretical description. J. Atmos. Sci., 77, 36373660, https://doi.org/10.1175/JAS-D-19-0243.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mulholland, J. P., J. M. Peters, and H. Morrison, 2021: How does vertical wind shear influence entrainment in squall lines? J. Atmos. Sci., 78, 19311946, https://doi.org/10.1175/JAS-D-20-0299.1.

    • Search Google Scholar
    • Export Citation
  • Pauluis, O., 2008: Thermodynamic consistency of the anelastic approximation for a moist atmosphere. J. Atmos. Sci., 65, 27192729, https://doi.org/10.1175/2007JAS2475.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pauluis, O., and I. M. Held, 2002: Entropy budget of an atmosphere in radiative-convective equilibrium. Part II: Latent heat transport and moist processes. J. Atmos. Sci., 59, 140149, https://doi.org/10.1175/1520-0469(2002)059<0140:EBOAAI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, J. M., C. Nowotarski, and H. Morrison, 2019: The role of vertical wind shear in modulating maximum supercell updraft velocities. J. Atmos. Sci., 76, 31693189, https://doi.org/10.1175/JAS-D-19-0096.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, J. M., H. Morrison, A. C. Varble, W. M. Hannah, and S. E. Giangrande, 2020a: Thermal chains and entrainment in cumulus updrafts. Part II: Analysis of idealized simulations. J. Atmos. Sci., 77, 36613681, https://doi.org/10.1175/JAS-D-19-0244.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, J. M., H. Morrison, C. J. Nowotarski, J. P. Mulholland, and R. L. Thompson, 2020b: A formula for the maximum vertical velocity in supercell updrafts. J. Atmos. Sci., 77, 37473757, https://doi.org/10.1175/JAS-D-20-0103.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, J. M., C. J. Nowotarski, and G. L. Mullendore, 2020c: Are supercells resistant to entrainment because of their rotation? J. Atmos. Sci., 77, 14751495, https://doi.org/10.1175/JAS-D-19-0316.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, J. M., C. J. Nowotarski, J. P. Mulholland, and R. L. Thompson, 2020d: The influences of effective inflow layer streamwise vorticity and storm-relative flow on supercell updraft properties. J. Atmos. Sci., 77, 30333057, https://doi.org/10.1175/JAS-D-19-0355.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, J. M., H. Morrison, G. J. Zhang, and S. W. Powell, 2021: Improving the physical basis for updraft dynamics in deep convection parameterizations. J. Adv. Model. Earth Syst., 13, e2020MS002282, https://doi.org/10.1029/2020MS002282.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riehl, H., and J. S. Malkus, 1958: On the heat balance in the equatorial trough zone. Geophysica, 6, 503538.

  • Romps, D. M., 2015: MSE minus CAPE is the true conserved variable for an adiabatically lifted parcel. J. Atmos. Sci., 72, 36393646, https://doi.org/10.1175/JAS-D-15-0054.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romps, D. M., 2016: The stocastic parcel model: A deterministic parameterization of stochastically entraining convection. J. Adv. Model. Earth Syst., 8, 319344, https://doi.org/10.1002/2015MS000537.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romps, D. M., and Z. Kuang, 2010: Do undiluted convective plumes exist in the upper troposphere? J. Atmos. Sci., 67, 468484, https://doi.org/10.1175/2009JAS3184.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romps, D. M., and A. B. Charn, 2015: Sticky thermals: Evidence for a dominant balance between buoyancy and drag in cloud updrafts. J. Atmos. Sci., 72, 28902901, https://doi.org/10.1175/JAS-D-15-0042.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotunno, R., and J. B. Klemp, 1982: The influence of the shear-induced pressure gradient on thunderstorm motion. Mon. Wea. Rev., 110, 136151, https://doi.org/10.1175/1520-0493(1982)110<0136:TIOTSI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotunno, R., J. B. Klemp, and M. L. Weisman, 1988: A theory for strong, long-lived squall lines. J. Atmos. Sci., 45, 463485, https://doi.org/10.1175/1520-0469(1988)045<0463:ATFSLL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sherwood, S. C., D. Hernandez-Deckers, and M. Colin, 2013: Slippery thermals and the cumulus entrainment paradox. J. Atmos. Sci., 70, 24262442, https://doi.org/10.1175/JAS-D-12-0220.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, W.-Y., and O. M. Sun, 2015: Bernoulli equation and flow over a mountain. Geosci. Lett., 2, 7, https://doi.org/10.1186/s40562-015-0024-1.

  • Sun, W.-Y., and O. M. Sun, 2019: Revisiting the parcel method and CAPE. Dyn. Atmos. Oceans, 86, 134152, https://doi.org/10.1016/j.dynatmoce.2019.03.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and J. B. Klemp, 1982: The dependence of numerically simulated convective storms on vertical wind shear and buoyancy. Mon. Wea. Rev., 110, 504520, https://doi.org/10.1175/1520-0493(1982)110<0504:TDONSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., 2009: Effects of entrainment on convective available potential energy and closure assumptions in convective paramaterization. J. Geophys. Res., 114, D07109, https://doi.org/10.1029/2008JD010976.

    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., and N. A. McFarlane, 1991: Convective stabilization in midlatitudes. Mon. Wea. Rev., 119, 19151928, https://doi.org/10.1175/1520-0493(1991)119<1915:CSIM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., and N. A. McFarlane, 1995: Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian climate center general-circulation model. Atmos.–Ocean, 33, 407446, https://doi.org/10.1080/07055900.1995.9649539.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 114 114 34
Full Text Views 71 71 12
PDF Downloads 84 84 12

Evaluating the Conservation of Energy Variables in Simulations of Deep Moist Convection

View More View Less
  • 1 a Department of Meteorology, Naval Postgraduate School, Monterey, California
  • | 2 b Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, Indiana
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

It is often assumed in parcel theory calculations, numerical models, and cumulus parameterizations that moist static energy (MSE) is adiabatically conserved. However, the adiabatic conservation of MSE is only approximate because of the assumption of hydrostatic balance. Two alternative variables are evaluated here: MSE − IB and MSE + KE, wherein IB is the path integral of buoyancy (B) and KE is kinetic energy. Both of these variables relax the hydrostatic assumption and are more precisely conserved than MSE. This article quantifies the errors that result from assuming that the aforementioned variables are conserved in large-eddy simulations (LES) of both disorganized and organized deep convection. Results show that both MSE − IB and MSE + KE better predict quantities along trajectories than MSE alone. MSE − IB is better conserved in isolated deep convection, whereas MSE − IB and MSE + KE perform comparably in squall-line simulations. These results are explained by differences between the pressure perturbation behavior of squall lines and isolated convection. Errors in updraft B diagnoses are universally minimized when MSE − IB is assumed to be adiabatically conserved, but only when moisture dependencies of heat capacity and temperature dependency of latent heating are accounted for. When less accurate latent heat and heat capacity formulae were used, MSE − IB yielded poorer B predictions than MSE due to compensating errors. Our results suggest that various applications would benefit from using either MSE − IB or MSE + KE instead of MSE with properly formulated heat capacities and latent heats.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: J. Peters, jmpeters@nps.edu

Abstract

It is often assumed in parcel theory calculations, numerical models, and cumulus parameterizations that moist static energy (MSE) is adiabatically conserved. However, the adiabatic conservation of MSE is only approximate because of the assumption of hydrostatic balance. Two alternative variables are evaluated here: MSE − IB and MSE + KE, wherein IB is the path integral of buoyancy (B) and KE is kinetic energy. Both of these variables relax the hydrostatic assumption and are more precisely conserved than MSE. This article quantifies the errors that result from assuming that the aforementioned variables are conserved in large-eddy simulations (LES) of both disorganized and organized deep convection. Results show that both MSE − IB and MSE + KE better predict quantities along trajectories than MSE alone. MSE − IB is better conserved in isolated deep convection, whereas MSE − IB and MSE + KE perform comparably in squall-line simulations. These results are explained by differences between the pressure perturbation behavior of squall lines and isolated convection. Errors in updraft B diagnoses are universally minimized when MSE − IB is assumed to be adiabatically conserved, but only when moisture dependencies of heat capacity and temperature dependency of latent heating are accounted for. When less accurate latent heat and heat capacity formulae were used, MSE − IB yielded poorer B predictions than MSE due to compensating errors. Our results suggest that various applications would benefit from using either MSE − IB or MSE + KE instead of MSE with properly formulated heat capacities and latent heats.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: J. Peters, jmpeters@nps.edu
Save