• Bordoni, S., and T. Schneider, 2008: Monsoons as eddy-mediated regime transitions of the tropical overturning circulation. Nat. Geosci., 1, 515519, https://doi.org/10.1038/ngeo248.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colyer, G. J., and G. K. Vallis, 2019: Zonal-mean atmospheric dynamics of slowly rotating terrestrial planets. J. Atmos. Sci., 76, 13971418, https://doi.org/10.1175/JAS-D-18-0180.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Kok, R. J., N. A. Teanby, L. Maltagliati, P. G. J. Irwin, and S. Vinatier, 2014: HCN ice in Titan’s high-altitude southern polar cloud. Nature, 514, 6567, https://doi.org/10.1038/nature13789.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Del Genio, A. D., and R. J. Suozzo, 1987: A comparative study of rapidly and slowly rotating dynamical regimes in a terrestrial general circulation model. J. Atmos. Sci., 44, 973986, https://doi.org/10.1175/1520-0469(1987)044<0973:ACSORA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Faulk, S., J. Mitchell, and S. Bordoni, 2017: Effects of rotation rate and seasonal forcing on the ITCZ extent in planetary atmospheres. J. Atmos. Sci., 74, 665678, https://doi.org/10.1175/JAS-D-16-0014.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferreira, D., J. Marshall, P. A. O’Gorman, and S. Seager, 2014: Climate at high-obliquity. Icarus, 243, 236248, https://doi.org/10.1016/j.icarus.2014.09.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Findlater, J., 1969: A major low-level air current near the Indian Ocean during the northern summer. Quart. J. Roy. Meteor. Soc., 95, 362380, https://doi.org/10.1002/qj.49709540409.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flasar, F., and R. Achterberg, 2009: The structure and dynamics of Titan’s middle atmosphere. Philos. Trans. Roy. Soc. London, 367A, 649664, https://doi.org/10.1098/rsta.2008.0242.

    • Search Google Scholar
    • Export Citation
  • Frierson, D. M. W., I. M. Held, and P. Zurita-Gotor, 2006: A gray-radiation aquaplanet moist GCM. Part I: Static stability and eddy scale. J. Atmos. Sci., 63, 25482566, https://doi.org/10.1175/JAS3753.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Greybush, S. J., and Coauthors, 2019: The Ensemble Mars Atmosphere Reanalysis System (EMARS) version 1.0. Geosci. Data J., 6, 137150, https://doi.org/10.1002/gdj3.77.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guendelman, I., and Y. Kaspi, 2018: An axisymmetric limit for the width of the Hadley cell on planets with large obliquity and long seasonality. Geophys. Res. Lett., 45, 13 21313 221, https://doi.org/10.1029/2018GL080752.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guendelman, I., and Y. Kaspi, 2019: Atmospheric dynamics on terrestrial planets: The seasonal response to changes in orbital, rotational, and radiative timescales. Astrophys. J., 881, 67, https://doi.org/10.3847/1538-4357/ab2a06.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guendelman, I., and Y. Kaspi, 2020: Atmospheric dynamics on terrestrial planets with eccentric orbits. Astrophys. J., 901, 46, https://doi.org/10.3847/1538-4357/abaef8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haberle, R. M., J. B. Pollack, J. R. Barnes, R. W. Zurek, C. B. Leovy, J. R. Murphy, H. Lee, and J. Schaeffer, 1993: Mars atmospheric dynamics as simulated by the NASA Ames General Circulation Model: 1. The zonal-mean circulation. J. Geophys. Res. Planets, 98, 30933123, https://doi.org/10.1029/92JE02946.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haberle, R. M., J. R. Murphy, and J. Schaeffer, 2003: Orbital change experiments with a Mars general circulation model. Icarus, 161, 6689, https://doi.org/10.1016/S0019-1035(02)00017-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hayes, A., and Coauthors, 2013: Wind driven capillary-gravity waves on Titan’s lakes: Hard to detect or non-existent? Icarus, 225, 403412, https://doi.org/10.1016/j.icarus.2013.04.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., and A. Y. Hou, 1980: Nonlinear axially symmetric circulations in a nearly inviscid atmosphere. J. Atmos. Sci., 37, 515533, https://doi.org/10.1175/1520-0469(1980)037<0515:NASCIA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hill, S. A., S. Bordoni, and J. L. Mitchell, 2019: Axisymmetric constraints on cross-equatorial Hadley cell extent. J. Atmos. Sci., 76, 15471564, https://doi.org/10.1175/JAS-D-18-0306.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hinson, D. P., R. A. Simpson, J. D. Twicken, G. L. Tyler, and F. M. Flasar, 1999: Initial results from radio occultation measurements with Mars global surveyor. J. Geophys. Res. Planets, 104, 26 99727 012, https://doi.org/10.1029/1999JE001069.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hofgartner, J. D., and Coauthors, 2016: Titan’s “magic islands”: Transient features in a hydrocarbon sea. Icarus, 271, 338349, https://doi.org/10.1016/j.icarus.2016.02.022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joseph, P. V., and P. L. Raman, 1966: Existence of low level westerly jet stream over peninsular India during July. Indian J. Meteor. Geophys., 17, 407410.

    • Search Google Scholar
    • Export Citation
  • Kaspi, Y., and A. P. Showman, 2015: Atmospheric dynamics of terrestrial exoplanets over a wide range of orbital and atmospheric parameters. Astrophys. J., 804, 60, https://doi.org/10.1088/0004-637X/804/1/60.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Komacek, T. D., and D. S. Abbot, 2019: The atmospheric circulation and climate of terrestrial planets orbiting sun-like and M Dwarf stars over a broad range of planetary parameters. Astrophys. J., 871, 245, https://doi.org/10.3847/1538-4357/aafb33.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lebonnois, S., F. M. Flasar, T. Tokano, and C. E. Newman, 2014: The general circulation of Titan’s lower and middle atmosphere. Titan: Interior, Surface, Atmosphere and Space Environment, I. Müller-Wodarg et al., Eds., Cambridge University Press, 122–157.

    • Crossref
    • Export Citation
  • Lindzen, R. S., and A. V. Hou, 1988: Hadley circulations for zonally averaged heating centered off the equator. J. Atmos. Sci., 45, 24162427, https://doi.org/10.1175/1520-0469(1988)045<2416:HCFZAH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Linsenmeier, M., S. Pascale, and V. Lucarini, 2015: Climate of earth-like planets with high obliquity and eccentric orbits: Implications for habitability conditions. Planet. Space Sci., 105, 4359, https://doi.org/10.1016/j.pss.2014.11.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lobo, A. H., and S. Bordoni, 2020: Atmospheric dynamics in high obliquity planets. Icarus, 340, 113592, https://doi.org/10.1016/j.icarus.2019.113592.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitchell, J. L., G. K. Vallis, and S. F. Potter, 2014: Effects of the seasonal cycle on superrotation in planetary atmospheres. Astrophys. J., 787, 23, https://doi.org/10.1088/0004-637X/787/1/23.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Privé, N. C., and R. A. Plumb, 2007: Monsoon dynamics with interactive forcing. Part I: Axisymmetric studies. J. Atmos. Sci., 64, 14171430, https://doi.org/10.1175/JAS3916.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raiter, D., E. Galanti, and Y. Kaspi, 2020: The tropical atmospheric conveyor belt: A coupled Eulerian-Lagrangian analysis of the large-scale tropical circulation. Geophys. Res. Lett., 47, e2019GL086437, https://doi.org/10.1029/2019GL086437.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Read, P. L., and S. Lebonnois, 2018: Superrotation on Venus, on Titan, and elsewhere. Annu. Rev. Earth Planet. Sci., 46, 175202, https://doi.org/10.1146/annurev-earth-082517-010137.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sánchez-Lavega, A., 2010: An Introduction to Planetary Atmospheres. Taylor & Francis, 629 pp.

  • Sánchez-Lavega, A., S. Lebonnois, T. Imamura, P. Read, and D. Luz, 2017: The atmospheric dynamics of Venus. Space Sci. Rev., 212, 15411616, https://doi.org/10.1007/s11214-017-0389-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, T., 2006: The general circulation of the atmosphere. Annu. Rev. Earth Planet. Sci., 34, 655688, https://doi.org/10.1146/annurev.earth.34.031405.125144.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, T., and S. Bordoni, 2008: Eddy-mediated regime transitions in the seasonal cycle of a Hadley circulation and implications for monsoon dynamics. J. Atmos. Sci., 65, 915934, https://doi.org/10.1175/2007JAS2415.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schoeberl, M. R., and D. L. Hartmann, 1991: The dynamics of the stratospheric polar vortex and its relation to springtime ozone depletions. Science, 251, 4652, https://doi.org/10.1126/science.251.4989.46.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Singh, M. S., 2019: Limits on the extent of the solsticial Hadley cell: The role of planetary rotation. J. Atmos. Sci., 76, 19892004, https://doi.org/10.1175/JAS-D-18-0341.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tan, Z., O. Lachmy, and T. A. Shaw, 2019: The sensitivity of the jet stream response to climate change to radiative assumptions. J. Adv. Model. Earth Syst., 11, 934956, https://doi.org/10.1029/2018MS001492.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toigo, A. D., D. W. Waugh, and S. D. Guzewich, 2017: What causes Mars’ annular polar vortices? Geophys. Res. Lett., 44, 7178, https://doi.org/10.1002/2016GL071857.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toigo, A. D., D. W. Waugh, and S. D. Guzewich, 2020: Atmospheric transport into polar regions on Mars in different orbital epochs. Icarus, 347, 113816, https://doi.org/10.1016/j.icarus.2020.113816.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., 2017: Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation. 2nd ed. Cambridge University Press, 964 pp., https://doi.org/10.1017/9781107588417.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., P. L. Read, F. Tabataba-Vakili, and R. M. B. Young, 2018: Comparative terrestrial atmospheric circulation regimes in simplified global circulation models. Part I: From cyclostrophic super-rotation to geostrophic turbulence. Quart. J. Roy. Meteor. Soc., 144, 25372557, https://doi.org/10.1002/qj.3350.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waugh, D. W., A. D. Toigo, S. D. Guzewich, S. J. Greybush, R. J. Wilson, and L. Montabone, 2016: Martian polar vortices: Comparison of reanalyses. J. Geophys. Res. Planets, 121, 17701785, https://doi.org/10.1002/2016JE005093.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waugh, D. W., A. H. Sobel, and L. M. Polvani, 2017: What is the polar vortex and how does it influence weather? Bull. Amer. Meteor. Soc., 98, 3744, https://doi.org/10.1175/BAMS-D-15-00212.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, G. P., 1988: The dynamical range of global circulations––II. Climate Dyn., 3, 4584, https://doi.org/10.1007/BF01080901.

  • Williams, G. P., and J. L. Holloway, 1982: The range and unity of planetary circulations. Nature, 297, 295299, https://doi.org/10.1038/297295a0.

All Time Past Year Past 30 Days
Abstract Views 147 147 35
Full Text Views 60 60 9
PDF Downloads 65 65 10

The Emergence of a Summer Hemisphere Jet in Planetary Atmospheres

View More View Less
  • 1 a Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, Israel
  • | 2 b Department of Earth and Planetary Sciences, The Johns Hopkins University, Baltimore, Maryland
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Zonal jets are common in planetary atmospheres. Their character, structure, and seasonal variability depend on the planetary parameters. During solstice on Earth and Mars, there is a strong westerly jet in the winter hemisphere and weak, low-level westerlies in the ascending regions of the Hadley cell in the summer hemisphere. This summer jet has been less explored in a broad planetary context, both due to the dominance of the winter jet and since the balances controlling it are more complex, and understanding them requires exploring a broader parameter regime. To better understand the jet characteristics on terrestrial planets and the transition between winter- and summer-dominated jet regimes, we explore the jet’s dependence on rotation rate and obliquity. Across a significant portion of the parameter space, the dominant jet is in the winter hemisphere, and the summer jet is weaker and restricted to the boundary layer. However, we show that for slow rotation rates and high obliquities, the strongest jet is in the summer rather than the winter hemisphere. Analysis of the summer jet’s momentum balance reveals that the balance is not simply cyclostrophic and that both boundary layer drag and vertical advection are essential. At high obliquities and slow rotation rates, the cross-equatorial winter cell is wide and strong. The returning poleward flow in the summer hemisphere is balanced by low-level westerlies through an Ekman balance and momentum is advected upward close to the ascending branch, resulting in a midtroposphere summer jet.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ilai Guendelman, ilai.guendelman@weizmann.ac.il

Abstract

Zonal jets are common in planetary atmospheres. Their character, structure, and seasonal variability depend on the planetary parameters. During solstice on Earth and Mars, there is a strong westerly jet in the winter hemisphere and weak, low-level westerlies in the ascending regions of the Hadley cell in the summer hemisphere. This summer jet has been less explored in a broad planetary context, both due to the dominance of the winter jet and since the balances controlling it are more complex, and understanding them requires exploring a broader parameter regime. To better understand the jet characteristics on terrestrial planets and the transition between winter- and summer-dominated jet regimes, we explore the jet’s dependence on rotation rate and obliquity. Across a significant portion of the parameter space, the dominant jet is in the winter hemisphere, and the summer jet is weaker and restricted to the boundary layer. However, we show that for slow rotation rates and high obliquities, the strongest jet is in the summer rather than the winter hemisphere. Analysis of the summer jet’s momentum balance reveals that the balance is not simply cyclostrophic and that both boundary layer drag and vertical advection are essential. At high obliquities and slow rotation rates, the cross-equatorial winter cell is wide and strong. The returning poleward flow in the summer hemisphere is balanced by low-level westerlies through an Ekman balance and momentum is advected upward close to the ascending branch, resulting in a midtroposphere summer jet.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ilai Guendelman, ilai.guendelman@weizmann.ac.il
Save