• Alford, A. A., J. A. Zhang, M. I. Biggerstaff, P. Dodge, F. D. Marks, and D. J. Bodine, 2020: Transition of the hurricane boundary layer during the landfall of Hurricane Irene (2011). J. Atmos. Sci., 77, 35093531, https://doi.org/10.1175/JAS-D-19-0290.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andersen, T., and J. M. Shepherd, 2013: A global spatiotemporal analysis of inland tropical cyclone maintenance or intensification. Int. J. Climatol., 34, 391402, https://doi.org/10.1002/joc.3693.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andreas, E. L, L. Mahrt, and D. Vickers, 2015: An improved bulk air–sea surface flux algorithm, including spray-mediated transfer. Quart. J. Roy. Meteor. Soc., 141, 642654, https://doi.org/10.1002/qj.2424.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bhowmik, S. K. R., S. D. Kotal, and S. R. Kalsi, 2005: An empirical model for predicting the decay of tropical cyclone wind speed after landfall over the Indian region. J. Appl. Meteor., 44, 179185, https://doi.org/10.1175/JAM-2190.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bister, M., and K. E. Emanuel, 1998: Dissipative heating and hurricane intensity. Meteor. Atmos. Phys., 65, 233240, https://doi.org/10.1007/BF01030791.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., 2012: Effects of surface exchange coefficients and turbulence length scales on the intensity and structure of numerically simulated hurricanes. Mon. Wea. Rev., 140, 11251143, https://doi.org/10.1175/MWR-D-11-00231.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and J. M. Fritsch, 2002: A benchmark simulation for moist nonhydrostatic numerical models. Mon. Wea. Rev., 130, 29172928, https://doi.org/10.1175/1520-0493(2002)130<2917:ABSFMN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and R. Rotunno, 2009: The maximum intensity of tropical cyclones in axisymmetric numerical model simulations. Mon. Wea. Rev., 137, 17701789, https://doi.org/10.1175/2008MWR2709.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chavas, D. R., 2017: A simple derivation of tropical cyclone ventilation theory and its application to capped surface entropy fluxes. J. Atmos. Sci., 74, 29892996, https://doi.org/10.1175/JAS-D-17-0061.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, J., and D. R. Chavas, 2020: The transient responses of an axisymmetric tropical cyclone to instantaneous surface roughening and drying. J. Atmos. Sci., 77, 28072834, https://doi.org/10.1175/JAS-D-19-0320.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cosby, B. J., G. Hornberger, R. B. Clapp, and T. Ginn, 1984: A statistical exploration of the relationships of soil moisture characteristics to the physical properties of soils. Water Resour. Res., 20, 682690, https://doi.org/10.1029/WR020i006p00682.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cronin, T. W., and D. R. Chavas, 2019: Dry and semidry tropical cyclones. J. Atmos. Sci., 76, 21932212, https://doi.org/10.1175/JAS-D-18-0357.1.

    • Search Google Scholar
    • Export Citation
  • Davis, C. A., and Coauthors, 2008: Prediction of landfalling hurricanes with the Advanced Hurricane WRF Model. Mon. Wea. Rev., 136, 19902005, https://doi.org/10.1175/2007MWR2085.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMaria, M., and J. Kaplan, 1994: Sea surface temperature and the maximum intensity of Atlantic tropical cyclones. J. Climate, 7, 13241334, https://doi.org/10.1175/1520-0442(1994)007<1324:SSTATM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMaria, M., and J. Kaplan, 1995: A simple empirical model for predicting the decay of tropical cyclone winds after landfall. J. Appl. Meteor., 34, 24992512, https://doi.org/10.1175/1520-0450(1995)034<2499:ASEMFP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMaria, M., M. Mainelli, L. K. Shay, J. A. Knaff, and J. Kaplan, 2005: Further improvements to the Statistical Hurricane Intensity Prediction Scheme (SHIPS). Wea. Forecasting, 20, 531543, https://doi.org/10.1175/WAF862.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMaria, M., J. A. Knaff, and J. Kaplan, 2006: On the decay of tropical cyclone winds crossing narrow landmasses. J. Appl. Meteor. Climatol., 45, 491499, https://doi.org/10.1175/JAM2351.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duran, P., and J. Molinari, 2018: Dramatic inner-core tropopause variability during the rapid intensification of Hurricane Patricia (2015). Mon. Wea. Rev., 146, 119134, https://doi.org/10.1175/MWR-D-17-0218.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1986: An air-sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43, 585605, https://doi.org/10.1175/1520-0469(1986)043<0585:AASITF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1997: Some aspects of hurricane inner core dynamics and energetics. J. Atmos. Sci., 54, 10141026, https://doi.org/10.1175/1520-0469(1997)054<1014:SAOHIC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 2012: Self-stratification of tropical cyclone outflow. Part II: Implications for storm intensification. J. Atmos. Sci., 69, 988996, https://doi.org/10.1175/JAS-D-11-0177.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 2018: Corrigendum. J. Atmos. Sci., 75, 21552156, https://doi.org/10.1175/JAS-D-18-0047.1.

  • Emanuel, K. A., and R. Rotunno, 2011: Self-stratification of tropical cyclone outflow. Part I: Implications for storm structure. J. Atmos. Sci., 68, 22362249, https://doi.org/10.1175/JAS-D-10-05024.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., S. Ravela, E. Vivant, and C. Risi, 2006: A statistical deterministic approach to hurricane risk assessment. Bull. Amer. Meteor. Soc., 87, 299314, https://doi.org/10.1175/BAMS-87-3-299.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evans, C., R. S. Schumacher, and T. J. Galarneau, 2011: Sensitivity in the overland reintensification of Tropical Cyclone Erin (2007) to near-surface soil moisture characteristics. Mon. Wea. Rev., 139, 38483870, https://doi.org/10.1175/2011MWR3593.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, J., N. L. Miller, and N. Schlegel, 2010: Sensitivity study of four land surface schemes in the WRF model. Adv. Meteor., 2010, 167436, https://doi.org/10.1155/2010/167436.

    • Search Google Scholar
    • Export Citation
  • Jing, R., and N. Lin, 2019: Tropical cyclone intensity evolution modeled as a dependent hidden Markov process. J. Climate, 32, 78377855, https://doi.org/10.1175/JCLI-D-19-0027.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jing, R., and N. Lin, 2020: An environment-dependent probabilistic tropical cyclone model. J. Adv. Model. Earth Syst., 12, e2019MS00197, https://doi.org/10.1029/2019MS001975.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaplan, J., and M. DeMaria, 1995: A simple empirical model for predicting the decay of tropical cyclone winds after landfall. J. Appl. Meteor. Climatol., 34, 24992512, https://doi.org/10.1175/1520-0450(1995)034<2499:ASEMFP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaplan, J., and M. DeMaria, 2001: On the decay of tropical cyclone winds after landfall in the New England area. J. Appl. Meteor., 40, 280286, https://doi.org/10.1175/1520-0450(2001)040<0280:OTDOTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kepert, J. D., 2001: The dynamics of boundary layer jets within the tropical cyclone core. Part I: Linear theory. J. Atmos. Sci., 58, 24692484, https://doi.org/10.1175/1520-0469(2001)058<2469:TDOBLJ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kepert, J. D., 2010: Slab- and height-resolving models of the tropical cyclone boundary layer. Part I: Comparing the simulations. Quart. J. Roy. Meteor. Soc., 136, 16861699, https://doi.org/10.1002/qj.667.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kieu, C., and Z. Moon, 2016: Hurricane intensity predictability. Bull. Amer. Meteor. Soc., 97, 18471857, https://doi.org/10.1175/BAMS-D-15-00168.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kieu, C., and Q. Wang, 2017: Stability of the tropical cyclone intensity equilibrium. J. Atmos. Sci., 74, 35913608, https://doi.org/10.1175/JAS-D-17-0028.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knaff, J. A., C. Sampson, and M. DeMaria, 2005: An operational statistical typhoon intensity prediction scheme for the western North Pacific. Wea. Forecasting, 20, 688699, https://doi.org/10.1175/WAF863.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kossin, J., 2018: A global slowdown of tropical-cyclone translation speed. Nature, 558, 104107, https://doi.org/10.1038/s41586-018-0158-3.

  • Kossin, J., 2019: Reply to: Moon, I.-J. et al.; Lanzante, J. R. Nature, 570, E16E22, https://doi.org/10.1038/s41586-019-1224-1.

  • Li, L., and P. Chakraborty, 2020: Slower decay of landfalling hurricanes in a warming world. Nature, 587, 230234, https://doi.org/10.1038/s41586-020-2867-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lilly, D. K., and K. Emanuel, 1985: A steady-state hurricane model. 16th Conf. on Hurricanes and Tropical Meteorology, Houston, TX, Amer. Meteor. Soc., 142–143.

  • Liu, Y., D.-L. Zhang, and M. K. Yau, 2017: A multiscale numerical study of Hurricane Andrew (1992). Part I: Explicit simulation and verification. Mon. Wea. Rev., 125, 30733093, https://doi.org/10.1175/1520-0493(1997)125<3073:AMNSOH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marks, F. D., Jr., and Coauthors, 2008: Structure of the eye and eyewall of Hurricane Hugo (1989). Mon. Wea. Rev., 136, 12371259, https://doi.org/10.1175/2007MWR2073.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molinari, J., and P. Duran, 2014: Low Richardson number in the tropical cyclone outflow layer. J. Atmos. Sci., 71, 31643179, https://doi.org/10.1175/JAS-D-14-0005.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., J. Persing, and R. K. Smith, 2019: On the hypothesized outflow control of tropical cyclone intensification. Quart. J. Roy. Meteor. Soc., 145, 13091322, https://doi.org/10.1002/qj.3479.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nolan, D., J. Zhang, and D. Stern, 2009: Evaluation of planetary boundary layer parameterizations in tropical cyclones by comparison of in-situ observations and high-resolution simulations of Hurricane Isabel (2003). Part I: Initialization, maximum winds, and the outer-core boundary layer. Mon. Wea. Rev., 137, 36513674, https://doi.org/10.1175/2009MWR2785.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peng, K., R. Rotunno, and G. H. Bryan, 2018: Evaluation of a time-dependent model for the intensification of tropical cyclones. J. Atmos. Sci., 75, 21252138, https://doi.org/10.1175/JAS-D-17-0382.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peng, K., R. Rotunno, G. H. Bryan, and J. Fang, 2019: Evolution of an axisymmetric tropical cyclone before reaching slantwise moist neutrality. J. Atmos. Sci., 76, 18651884, https://doi.org/10.1175/JAS-D-18-0264.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Powell, M. D., P. J. Vickery, and T. A. Reinhold, 2003: Reduced drag coefficient for high wind speeds in tropical cyclones. Nature, 422, 279283, https://doi.org/10.1038/nature01481.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramsay, H., M. Singh, and D. R. Chavas, 2020: Response of tropical cyclone formation and intensification rates to climate warming in idealized simulations. J. Adv. Model. Earth Syst., 12, e2020MS002086, https://doi.org/10.1029/2020MS002086.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rappaport, E., 2000: Loss of life in the United States associated with recent Atlantic tropical cyclones. Bull. Amer. Meteor. Soc., 81, 20652073, https://doi.org/10.1175/1520-0477(2000)081<2065:LOLITU>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rappaport, E., 2014: Fatalities in the United States from Atlantic tropical cyclones: New data and interpretation. Bull. Amer. Meteor. Soc., 95, 341346, https://doi.org/10.1175/BAMS-D-12-00074.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seidel, D. J., C. O. Ao, and K. Li, 2010: Estimating climatological planetary boundary layer heights from radiosonde observations: Comparison of methods and uncertainty analysis. J. Geophys. Res., 115, D16113, https://doi.org/10.1029/2009JD013680.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shutts, G. J., 1981: Hurricane structure and the zero potential vorticity approximation. Mon. Wea. Rev., 109, 324329, https://doi.org/10.1175/1520-0493(1981)109<0324:HSATZP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. K., and M. T. Montgomery, 2010: Hurricane boundary-layer theory. Quart. J. Roy. Meteor. Soc., 136, 16651670, https://doi.org/10.1002/qj.679.

  • Stull, R. B., 1988: Boundary layer conditions and surface forcings. An Introduction to Boundary Layer Meteorology, R. B. Stull, Ed., Kluwer Academic Publishers, 261–270.

    • Crossref
    • Export Citation
  • Tang, B., and K. Emanuel, 2010: Midlevel ventilation’s constraint on tropical cyclone intensity. J. Atmos. Sci., 67, 18171830, https://doi.org/10.1175/2010JAS3318.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tao, D., K. K. Emanuel, F. Zhang, R. Rotunno, M. M. Bell, and R. G. Nystrom, 2019: Evaluation of the assumptions in the steady-state tropical cyclone self-stratified outflow using three-dimensional convection-allowing simulations. J. Atmos. Sci., 76, 29953009, https://doi.org/10.1175/JAS-D-19-0033.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tuleya, R. E., and Y. Kurihara, 1978: A numerical simulation of the landfall of tropical cyclones. J. Atmos. Sci., 35, 242257, https://doi.org/10.1175/1520-0469(1978)035<0242:ANSOTL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vickery, P. J., 2005: Simple empirical models for estimating the increase in the central pressure of tropical cyclones after landfall along the coastline of the United States. J. Appl. Meteor., 44, 18071826, https://doi.org/10.1175/JAM2310.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vickery, P. J., and L. Twisdale, 1995: Wind-field and filling models for hurricane wind-speed prediction. J. Struct. Eng., 121, 17001709, https://doi.org/10.1061/(ASCE)0733-9445(1995)121:11(1700).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vickery, P. J., P. F. Skerjl, and L. Twisdale, 2000: Simulation of hurricane risk in the U.S. using empirical track model. J. Struct. Eng., 126, 12221237, https://doi.org/10.1061/(ASCE)0733-9445(2000)126:10(1222).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Villarini, G., R. Goska, J. A. Smith, and G. A. Vecchi, 2014: North Atlantic tropical cyclones and U.S. flooding. Bull. Amer. Meteor. Soc., 95, 13811388, https://doi.org/10.1175/BAMS-D-13-00060.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wong, M. L., J. C.-L. Chan, and W. Zhou, 2008: A simple empirical model for estimating the intensity change of tropical cyclones after landfall along the south China coast. J. Appl. Meteor. Climatol., 47, 326338, https://doi.org/10.1175/2007JAMC1633.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xi, D., N. N. Lin, and J. Smith, 2020: Evaluation of a physics-based tropical cyclone rainfall model for risk assessment. J. Hydrometeor., 21, 21972218, https://doi.org/10.1175/JHM-D-20-0035.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zeng, J., and Q. Zhang, 2020: The trends in land surface heat fluxes over global monsoon domains and their responses to monsoon and precipitation. Sci. Rep., 10, 5762, https://doi.org/10.1038/s41598-020-62467-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., R. F. Rogers, D. S. Nolan, and F. D. Marks, 2011: On the characteristic height scales of the hurricane boundary layer. Mon. Wea. Rev., 139, 25232535, https://doi.org/10.1175/MWR-D-10-05017.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 113 113 34
Full Text Views 60 60 12
PDF Downloads 68 68 13

Can Existing Theory Predict the Response of Tropical Cyclone Intensity to Idealized Landfall?

View More View Less
  • 1 a Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, Indiana
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Tropical cyclones cause significant inland hazards, including wind damage and freshwater flooding, which depend strongly on how storm intensity evolves after landfall. Existing theoretical predictions for storm intensification and equilibrium storm intensity have been tested over the open ocean but have not yet been applied to storms after landfall. Recent work examined the transient response of the tropical cyclone low-level wind field to instantaneous surface roughening or drying in idealized axisymmetric f-plane simulations. Here, experiments testing combined surface roughening and drying with varying magnitudes of each are used to test theoretical predictions for the intensity response. The transient response to combined surface forcings can be reproduced by the product of their individual responses, in line with traditional potential intensity theory. Existing intensification theory is generalized to weakening and found capable of reproducing the time-dependent inland intensity decay. The initial (0–10 min) rapid decay of near-surface wind caused by surface roughening is not captured by existing theory but can be reproduced by a simple frictional spindown model, where the decay rate is a function of surface drag coefficient. Finally, the theory is shown to compare well with the prevailing empirical decay model for real-world storms. Overall, results indicate the potential for existing theory to predict how tropical cyclone intensity evolves after landfall.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jie Chen, chenjie@princeton.edu

Abstract

Tropical cyclones cause significant inland hazards, including wind damage and freshwater flooding, which depend strongly on how storm intensity evolves after landfall. Existing theoretical predictions for storm intensification and equilibrium storm intensity have been tested over the open ocean but have not yet been applied to storms after landfall. Recent work examined the transient response of the tropical cyclone low-level wind field to instantaneous surface roughening or drying in idealized axisymmetric f-plane simulations. Here, experiments testing combined surface roughening and drying with varying magnitudes of each are used to test theoretical predictions for the intensity response. The transient response to combined surface forcings can be reproduced by the product of their individual responses, in line with traditional potential intensity theory. Existing intensification theory is generalized to weakening and found capable of reproducing the time-dependent inland intensity decay. The initial (0–10 min) rapid decay of near-surface wind caused by surface roughening is not captured by existing theory but can be reproduced by a simple frictional spindown model, where the decay rate is a function of surface drag coefficient. Finally, the theory is shown to compare well with the prevailing empirical decay model for real-world storms. Overall, results indicate the potential for existing theory to predict how tropical cyclone intensity evolves after landfall.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jie Chen, chenjie@princeton.edu

Supplementary Materials

    • Supplemental Materials (PDF 2.79 MB)
Save