• Albrecht, B. A., 1989: Aerosols, cloud microphysics, and fractional cloudiness. Science, 245, 12271230, https://doi.org/10.1126/science.245.4923.1227.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Altaratz, O., I. Koren, L. A. Remer, and E. Hirsch, 2014: Review: Cloud invigoration by aerosols—Coupling between microphysics and dynamics. Atmos. Res., 140–141, 3860, https://doi.org/10.1016/j.atmosres.2014.01.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blyth, A. M., J. H. Lowenstein, Y. Huang, Z. Cui, S. Davies, and K. S. Carslaw, 2013: The production of warm rain in shallow maritime cumulus clouds. Quart. J. Roy. Meteor. Soc., 139, 2031, https://doi.org/10.1002/qj.1972.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Q., I. Koren, O. Altaratz, R. H. Heiblum, G. Dagan, and L. Pinto, 2017: How do changes in warm-phase microphysics affect deep convective clouds? Atmos. Chem. Phys., 17, 95859598, https://doi.org/10.5194/acp-17-9585-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Connolly, P. J., and Coauthors, 2013: Can aerosols influence deep tropical convection? Aerosol indirect effects in the Hector island thunderstorm. Quart. J. Roy. Meteor. Soc., 139, 21902208, https://doi.org/10.1002/qj.2083.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Costa, A., and Coauthors, 2017: Classification of arctic, midlatitude and tropical clouds in the mixed-phase temperature regime. Atmos. Chem. Phys., 17, 12 21912 238, https://doi.org/10.5194/acp-17-12219-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cui, Z., S. Davies, K. S. Carslaw, and A. M. Blyth, 2011: The response of precipitation to aerosol through riming and melting in deep convective clouds. Atmos. Chem. Phys., 11, 34953510, https://doi.org/10.5194/acp-11-3495-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dagan, G., I. Koren, and O. Altaratz, 2018: Quantifying the effect of aerosol on vertical velocity and effective terminal velocity in warm convective clouds. Atmos. Chem. Phys., 18, 67616769, https://doi.org/10.5194/acp-18-6761-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Devenish, B. J., K. Furtado, and D. J. Thomson, 2016: Analytical solutions of the supersaturation equation for a warm cloud. J. Atmos. Sci., 73, 34533465, https://doi.org/10.1175/JAS-D-15-0281.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1994: Atmospheric Convection. Oxford University Press, 580 pp.

  • Fan, J., R. Zhang, G. Li, and W.-K. Tao, 2007: Effects of aerosols and relative humidity on cumulus clouds. J. Geophys. Res., 112, D14204, https://doi.org/10.1029/2006JD008136.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, J., and Coauthors, 2009: Dominant role by vertical wind shear in regulating aerosol effects on deep convective clouds. J. Geophys. Res., 114, D22206, https://doi.org/10.1029/2009JD012352.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, J., D. Rosenfeld, Y. Ding, L. R. Leung, and Z. Li, 2012: Potential aerosol indirect effects on atmospheric circulation and radiative forcing through deep convection. Geophys. Res. Lett., 39, L09806, https://doi.org/10.1029/2012GL051851.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, J., L. R. Leung, D. Rosenfeld, Q. Chen, Z. Li, J. Zhang, and H. Yan, 2013: Microphysical effects determine macrophysical response for aerosol impacts on deep convective clouds. Proc. Natl. Acad. Sci. USA, 110, E4581E4590, https://doi.org/10.1073/pnas.1316830110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, J., Y. W. D. Rosenfeld, and X. Liu, 2016: Review of aerosol-cloud interactions: Mechanisms, significance, and challenges. J. Atmos. Sci., 73, 42214252, https://doi.org/10.1175/JAS-D-16-0037.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., and H. Morrison, 2017: Modeling condensation in deep convection. J. Atmos. Sci., 74, 22472267, https://doi.org/10.1175/JAS-D-16-0255.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heikenfeld, M., B. White, L. Labbouz, and P. Stier, 2019: Aerosol effects on deep convection: The propagation of aerosol perturbations through convective cloud microphysics. Atmos. Chem. Phys., 19, 26012627, https://doi.org/10.5194/acp-19-2601-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., 1994: Cloud Dynamics. Academic Press, 573 pp.

  • Khain, A. P., 2009: Notes on state-of-the-art investigations of aerosol effects on precipitation: A critical review. Environ. Res. Lett., 4, 015004, https://doi.org/10.1088/1748-9326/4/1/015004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khain, A. P., A. Pokrovsky, M. Pinsky, A. Seifert, and V. Phillips, 2004: Simulation of effects of atmospheric aerosols on deep turbulent convective clouds using a spectral microphysics mixed-phase cumulus cloud model. Part I: Model description and possible applications. J. Atmos. Sci., 61, 29632982, https://doi.org/10.1175/JAS-3350.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khain, A. P., D. Rosenfeld, and A. Pokrovsky, 2005: Aerosol impact on the dynamics and microphysics of deep convective clouds. Quart. J. Roy. Meteor. Soc., 131, 26392663, https://doi.org/10.1256/qj.04.62.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khain, A. P., N. BenMoshe, and A. Pokrovsky, 2008: Factors determining the impact of aerosols on surface precipitation from clouds: An attempt at classification. J. Atmos. Sci., 65, 17211748, https://doi.org/10.1175/2007JAS2515.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., and I. P. Mazin, 2003: Supersaturation of water vapor in clouds. J. Atmos. Sci., 60, 29572974, https://doi.org/10.1175/1520-0469(2003)060<2957:SOWVIC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, G., Y. Wang, and R. Zhang, 2008: Implementation of a two-moment bulk microphysics scheme to the WRF model to investigate aerosol-cloud interaction. J. Geophys. Res., 113, D15211, https://doi.org/10.1029/2007JD009361.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, G., Y. Wang, K.-H. Lee, Y. Diao, and R. Zhang, 2009: Impacts of aerosols on the development and precipitation of a mesoscale squall line. J. Geophys. Res., 114, D17205, https://doi.org/10.1029/2008JD011581.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, H., and Coauthors, 2019: Non-monotonic aerosol effect on precipitation in convective clouds over tropical oceans. Sci. Rep., 9, 7809, https://doi.org/10.1038/s41598-019-44284-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miyamoto, Y., J. Ito, S. Nishizawa, and H. Tomita, 2015: A linear thermal stability analysis of discretized fluid equations. Theor. Comput. Fluid Dyn., 29, 155169, https://doi.org/10.1007/s00162-015-0345-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miyamoto, Y., S. Nishizawa, and H. Tomita, 2020: Impacts of number of cloud condensation nuclei on two-dimensional moist Rayleigh convection. J. Meteor. Soc. Japan, 98, 437453, https://doi.org/10.2151/jmsj.2020-023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nishizawa, S., H. Yashiro, Y. Sato, Y. Miyamoto, and H. Tomita, 2015: Influence of grid aspect ratio on planetary boundary layer turbulence in large-eddy simulations. Geosci. Model Dev., 8, 33933419, https://doi.org/10.5194/gmd-8-3393-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ooyama, K. V., 2001: A dynamic and thermodynamic foundation for modeling the moist atmosphere with parameterized microphysics. J. Atmos. Sci., 58, 20732102, https://doi.org/10.1175/1520-0469(2001)058<2073:ADATFF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pinsky, M., I. Mazin, A. Korolev, and A. Khain, 2013: Supersaturation and diffusional droplet growth in liquid clouds. J. Atmos. Sci., 70, 27782793, https://doi.org/10.1175/JAS-D-12-077.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Politovich, M., and W. Cooper, 1988: Variability of supersaturation in cumulus clouds. J. Atmos. Sci., 45, 16511664, https://doi.org/10.1175/1520-0469(1988)045<1651:VOTSIC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., and J. D. Klett, 1997: Microphysics of Clouds and Precipitation. Kluwer Academic, 976 pp.

  • Riehl, H., and J. S. Markus, 1958: On the heat balance in the equatorial trough zone. Geophysica, 6, 503538.

  • Rosenfeld, D., 1999: TRMM observed first direct evidence of smoke from forest fires inhibiting rainfall. Geophys. Res. Lett., 26, 31053108, https://doi.org/10.1029/1999GL006066.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., U. Lohmann, G. B. Raga, C. D. O’Dowd, M. Kulmala, S. Fuzzi, A. Reissell, and M. O. Andreae, 2008: Flood or drought: How do aerosols affect precipitation? Science, 321, 13091313, https://doi.org/10.1126/science.1160606.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., S. Sherwood, R. Wood, and L. Donner, 2014: Climate effects of aerosol-cloud interactions. Science, 343, 379380, https://doi.org/10.1126/science.1247490.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sato, Y., S. Nishizawa, H. Yashiro, Y. Miyamoto, Y. Kajikawa, and H. Tomita, 2015: Impacts of cloud microphysics on trade wind cumulus: Which cloud microphysics processes contribute to the diversity in a large eddy simulation? Prog. Earth Planet. Sci., 2, 23, https://doi.org/10.1186/s40645-015-0053-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scotti, A., C. Meneveau, and D. K. Lilly, 1993: Generalized Smagorinsky model for anisotropic grids. Phys. Fluids, 5A, 23062308, https://doi.org/10.1063/1.858537.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevens, B., 2005: Atmospheric moist convection. Annu. Rev. Earth Planet. Sci., 33, 605643, https://doi.org/10.1146/annurev.earth.33.092203.122658.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Storer, R. L., and S. C. van den Heever, 2013: Microphysical processes evident in aerosol forcing of tropical deep convective clouds. J. Atmos. Sci., 70, 430446, https://doi.org/10.1175/JAS-D-12-076.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Storer, R. L., S. C. van den Heever, and G. L. Stephens, 2010: Modeling aerosol impacts on convective storms in different environments. J. Atmos. Sci., 67, 39043915, https://doi.org/10.1175/2010JAS3363.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sui, C. H., X. Li, and M.-J. Yang, 2007: On the definition of precipitation efficiency. J. Atmos. Sci., 64, 45064513, https://doi.org/10.1175/2007JAS2332.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Suzuki, K., T. Nakajima, T. Y. Nakajima, and A. P. Khain, 2010: A study of microphysical mechanisms for correlation patterns between droplet radius and optical thickness of warm clouds with a spectral bin microphysics cloud model. J. Atmos. Sci., 67, 11261141, https://doi.org/10.1175/2009JAS3283.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tao, W.-K., J.-P. Chen, Z. Li, C. Wang, and C. Zhang, 2012: Impact of aerosols on convective clouds and precipitation. Rev. Geophys., 50, RG2001, https://doi.org/10.1029/2011RG000369.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Twomey, S., 1977: Influence of pollution on shortwave albedo of clouds. J. Atmos. Sci., 34, 11491152, https://doi.org/10.1175/1520-0469(1977)034<1149:TIOPOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, C., 2005: A modeling study of the response of tropical deep convection to the increase of cloud condensation nuclei concentration: 1. Dynamics and microphysics. J. Geophys. Res., 110, D21211, https://doi.org/10.1029/2004JD005720.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 92 92 25
Full Text Views 43 43 16
PDF Downloads 57 57 21

Effects of Number Concentration of Cloud Condensation Nuclei on Moist Convection Formation

View More View Less
  • 1 a Faculty of Environment and Information Studies, Keio University, Fujisawa, Japan
  • | 2 b RIKEN Center for Computational Science, Kobe, Japan
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

We examined the sensitivity of the formation of moist convection to the number of aerosols that serve as cloud condensation nuclei (CCN) based on a set of numerical experiments using a nonhydrostatic model with a bin cloud microphysics model. Additionally, a linear stability analysis for an air parcel incorporating effects of the CCN number concentration (NCCN) has been conducted to further demonstrate the findings in numerical experiments. The results of the numerical experiments show that moist convection does not form when NCCN ≤ 10 cm−3. The sensitivity to NCCN can be divided into three regimes: when NCCN ≤ 10 cm−3, convection does not form or not fully develop; when 1 ≤ NCCN ≤ 102 cm−3, maximum vertical velocity increases with NCCN; and when NCCN ≥ 102 cm−3, the intensity of convection does not largely depend on NCCN. We demonstrate that the main reason convection does not form under environments with a small NCCN is that the time scale for condensation is longer than that to change environmental conditions. Given a supersaturated environment, fewer droplets form when NCCN is small and the size of droplets is potentially large. Consequently, the amount of latent heating is limited and the air parcel cannot obtain buoyancy within a reasonable time scale. Linear stability analysis using a parcel model considering the effect of NCCN without ice-phase processes shows unstable and stable regimes as a function of the number of droplets. The analytically obtained critical droplet number for the convection formation well corresponds to the minimum NCCN beyond which convection forms in the present numerical experiments.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yoshiaki Miyamoto, ymiya@sfc.keio.ac.jp

Abstract

We examined the sensitivity of the formation of moist convection to the number of aerosols that serve as cloud condensation nuclei (CCN) based on a set of numerical experiments using a nonhydrostatic model with a bin cloud microphysics model. Additionally, a linear stability analysis for an air parcel incorporating effects of the CCN number concentration (NCCN) has been conducted to further demonstrate the findings in numerical experiments. The results of the numerical experiments show that moist convection does not form when NCCN ≤ 10 cm−3. The sensitivity to NCCN can be divided into three regimes: when NCCN ≤ 10 cm−3, convection does not form or not fully develop; when 1 ≤ NCCN ≤ 102 cm−3, maximum vertical velocity increases with NCCN; and when NCCN ≥ 102 cm−3, the intensity of convection does not largely depend on NCCN. We demonstrate that the main reason convection does not form under environments with a small NCCN is that the time scale for condensation is longer than that to change environmental conditions. Given a supersaturated environment, fewer droplets form when NCCN is small and the size of droplets is potentially large. Consequently, the amount of latent heating is limited and the air parcel cannot obtain buoyancy within a reasonable time scale. Linear stability analysis using a parcel model considering the effect of NCCN without ice-phase processes shows unstable and stable regimes as a function of the number of droplets. The analytically obtained critical droplet number for the convection formation well corresponds to the minimum NCCN beyond which convection forms in the present numerical experiments.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yoshiaki Miyamoto, ymiya@sfc.keio.ac.jp
Save