• Anderson, W., J. M. Barros, K. T. Christensen, and A. Awasthi, 2015: Numerical and experimental study of mechanisms responsible for turbulent secondary flows in boundary layer flows over spanwise heterogeneous roughness. J. Fluid Mech., 768, 316347, https://doi.org/10.1017/jfm.2015.91.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Atkinson, B. W., and J. W. Zhang, 1996: Mesoscale shallow convection in the atmosphere. Rev. Geophys., 34, 403431, https://doi.org/10.1029/96RG02623.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., M. G. Schlax, M. H. Frelich, and R. F. Miliff, 2004: Satellite measurements reveal persistent small-scale features in ocean winds. Science, 303, 978983, https://doi.org/10.1126/science.1091901.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, W., M. L. Banner, E. J. Walsh, J. B. Jensen, and S. Lee, 2001: The Southern Ocean Waves Experiment. Part II: Sea surface response to wind speed and wind stress variations. J. Atmos. Sci., 31, 174198, https://doi.org/10.1175/1520-0485(2001)031<0174:TSOWEP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cronin, M. F., and Coauthors, 2019: Air-sea fluxes with a focus on heat and momentum. Front. Mar. Sci., 6, 430, https://doi.org/10.3389/fmars.2019.00430.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’Asaro, E., 2014: Turbulence in the upper-ocean mixed layer. Annu. Rev. Mar. Sci., 6, 101115, https://doi.org/10.1146/annurev-marine-010213-135138.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1970: A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers. J. Fluid Mech., 41, 453480, https://doi.org/10.1017/S0022112070000691.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Edson, J., and Coauthors, 2007: The Coupled Boundary Layers and Air–Sea Transfer Experiment in Low Winds (CBLAST-Low). Bull. Amer. Meteor. Soc., 88, 341356, https://doi.org/10.1175/BAMS-88-3-341.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gaube, P., C. C. Chickadel, R. Branch, and A. Jessup, 2019: Satellite observations of SST-induced wind speed perturbation at the oceanic submesoscale. Geophys. Res. Lett., 46, 26902695, https://doi.org/10.1029/2018GL080807.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gula, J., M. J. Molemaker, and J. C. McWilliams, 2014: Submesoscale cold filaments in the Gulf Stream. J. Phys. Oceanogr., 44, 26172643, https://doi.org/10.1175/JPO-D-14-0029.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krettenauer, K., and U. Schumann, 1992: Numerical simulation of turbulent convection over wavy terrain. J. Fluid Mech., 237, 261299, https://doi.org/10.1017/S0022112092003410.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Large, W. G., and S. Pond, 1981: Open ocean flux measurements in moderate to strong winds. J. Phys. Oceanogr., 11, 324336, https://doi.org/10.1175/1520-0485(1981)011<0324:OOMFMI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liang, J.-H., E. A. D’Asaro, C. L. McNeil, Y. Fan, R. R. Harcourt, S. R. Emerson, B. Yang, and P. P. Sullivan, 2020: Suppression of CO2 outgassing by gas bubbles under a hurricane. Geophys. Res. Lett., 47, e2020GL090249, https://doi.org/10.1029/2020GL090249.

    • Search Google Scholar
    • Export Citation
  • Lilly, D. K., 1986: The structure, energetics and propagation of rotating convective storms. Part I: Energy exchange with the mean flow. J. Atmos. Sci., 43, 113125, https://doi.org/10.1175/1520-0469(1986)043<0113:TSEAPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manasseh, R., C.-Y. Ching, and H. J. S. Fernando, 1998: The transition from density-driven to wave-dominated isolated flows. J. Fluid Mech., 361, 253274, https://doi.org/10.1017/S0022112098008775.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., 2016: Submesoscale currents in the ocean. Proc. Roy. Soc. London, 472A, 20160117, https://doi.org/10.1098/rspa.2016.0117.

    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., 2018: Surface wave effects on submesoscale fronts and filaments. J. Fluid Mech., 843, 479517, https://doi.org/10.1017/jfm.2018.158.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., 2020: Oceanic frontogenesis. Annu. Rev. Mar. Sci., 13, 227253, https://doi.org/10.1146/annurev-marine-032320-120725.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., C.-H. Moeng, and P. P. Sullivan, 1999: Turbulent fluxes and coherent structures in marine boundary layers: Investigations by large-eddy simulation. Air-Sea Exchange: Physics, Chemistry, Dynamics, and Statistics, G. Geernaert, Ed., Kluwer Academic Publishers, 507–538.

    • Crossref
    • Export Citation
  • McWilliams, J. C., F. Colas, and M. J. Molemaker, 2009: Cold filamentary intensification and oceanic surface convergence lines. Geophys. Res. Lett., 36, L18602, https://doi.org/10.1029/2009GL039402.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., J. Gula, M. J. Molemaker, L. Renault, and A. F. Shchepetkin, 2015: Filament frontogenesis by boundary layer turbulence. J. Phys. Oceanogr., 45, 19882005, https://doi.org/10.1175/JPO-D-14-0211.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, S. T. K., B. D. Keim, R. W. Talbot, and H. Mao, 2003: Sea breeze: Structure, forecasting, and impacts. Rev. Geophys., 41, 10111042, https://doi.org/10.1029/2003RG000124.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moeng, C.-H., 1984: A large-eddy simulation model for the study of planetary boundary-layer turbulence. J. Atmos. Sci., 41, 20522062, https://doi.org/10.1175/1520-0469(1984)041<2052:ALESMF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moeng, C.-H., and J. C. Wyngaard, 1986: An analysis of closures for pressure-scalar convariances in the convective boundary layer. J. Atmos. Sci., 43, 24992513, https://doi.org/10.1175/1520-0469(1986)043<2499:AAOCFP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moeng, C.-H., and P. P. Sullivan, 1994: A comparison of shear and buoyancy driven planetary-boundary-layer flows. J. Atmos. Sci., 51, 9991022, https://doi.org/10.1175/1520-0469(1994)051<0999:ACOSAB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moeng, C.-H., and P. P. Sullivan, 2015: Large-eddy simulation. Encyclopedia of Atmospheric Sciences, 2nd ed. G. R. North, F. Zhang, and J. Pyle, Eds., Vol. 4, Academic Press, 232–240.

    • Crossref
    • Export Citation
  • Moeng, C.-H., J. C. McWilliams, R. Rotunno, P. P. Sullivan, and J. Weil, 2004: Investigating 2D modeling of atmospheric convection in the PBL. J. Atmos. Sci., 61, 889903, https://doi.org/10.1175/1520-0469(2004)061<0889:IDMOAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nordström, J., N. Nordin, and D. Henningson, 1999: The fringe region technique and the Fourier method used in the direct numerical simulation of spatially evolving viscous flows. SIAM J. Sci. Comput., 20, 13651393, https://doi.org/10.1137/S1064827596310251.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Owinoh, A., J. Hunt, A. Orr, P. Clark, R. Klein, H. Fernando, and F. Nieuwstadt, 2005: Effects of changing surface heat flux on atmospheric boundary-layer flow over flat terrain. Bound.-Layer Meteor., 116, 331361, https://doi.org/10.1007/s10546-004-2819-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Patton, E. G., P. P. Sullivan, and C.-H. Moeng, 2005: The influence of idealized heterogeneity on wet and dry planetary boundary layers coupled to the land surface. J. Atmos. Sci., 62, 20782097, https://doi.org/10.1175/JAS3465.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Patton, E. G., P. P. Sullivan, R. H. Shaw, J. J. Finnigan, and J. C. Weil, 2016: Atmospheric stability influences on coupled boundary layer and canopy turbulence. J. Atmos. Sci., 73, 16211647, https://doi.org/10.1175/JAS-D-15-0068.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pope, S. B., 2000: Turbulent Flows. Cambridge University Press, 771 pp.

    • Crossref
    • Export Citation
  • Quinn, P. K., and Coauthors, 2021: Measurements from the RV Ronald H. Brown and related platforms as part of the Atlantic Tradewind Ocean-Atmosphere Mesoscale Interaction Campaign (ATOMIC). Earth Syst. Sci. Data, 13, 17591790, https://doi.org/10.5194/essd-13-1759-2021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raasch, S., and G. Harbusch, 2001: An analysis of secondary circulations and their effects caused by small-scale surface inhomogeneities using large-eddy simulation. Bound.-Layer Meteor., 101, 3159, https://doi.org/10.1023/A:1019297504109.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Renault, L., P. Marchesiello, S. Masson, and J. C. McWilliams, 2019: Remarkable control of western boundary currents by eddy killing, a mechanical air-sea coupling process. Geophys. Res. Lett., 46, 27432751, https://doi.org/10.1029/2018GL081211.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmidt, H., and U. Schumann, 1989: Coherent structure of the convective boundary layer derived from large-eddy simulations. J. Fluid Mech., 200, 511562, https://doi.org/10.1017/S0022112089000753.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seo, H., A. J. Miller, and J. R. Norris, 2016: Eddy–wind interaction in the California Current System: Dynamics and impacts. J. Phys. Oceanogr., 46, 439459, https://doi.org/10.1175/JPO-D-15-0086.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shao, M., and Coauthors, 2019: The variability of winds and fluxes observed near submeoscale fronts. J. Geophys. Res. Oceans, 124, 77567780, https://doi.org/10.1029/2019JC015236.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shroyer, E., and Coauthors, 2021: Bay of Bengal intraseasonal oscillations and the 2018 monsoon onset. Bull. Amer. Meteor. Soc., https://doi.org/10.1175/BAMS-D-20-0113.1, in press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skyllingstad, E. D., S. P. de Szoeke, and L. W. O’Neill, 2019: Modeling the transient response of tropical convection to mesoscale SST variations. J. Atmos. Sci., 76, 12271244, https://doi.org/10.1175/JAS-D-18-0079.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Small, R. J., and Coauthors, 2008: Air-sea interaction over ocean fronts and eddies. Dyn. Atmos. Oceans, 45, 274319, https://doi.org/10.1016/j.dynatmoce.2008.01.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spalart, P. R., and J. H. Watmuff, 1993: Experimental and numerical study of a turbulent boundary layer with pressure gradients. J. Fluid Mech., 249, 337371, https://doi.org/10.1017/S002211209300120X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevens, B., and Coauthors, 2021: EUREC4A. Earth Syst. Sci. Data, 13, 40674119, https://doi.org/10.5194/essd-13-4067-2021.

  • Sullivan, P. P., and J. C. McWilliams, 2010: Dynamics of winds and currents coupled to surface waves. Annu. Rev. Fluid Mech., 42, 1942, https://doi.org/10.1146/annurev-fluid-121108-145541.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., and E. G. Patton, 2011: The effect of mesh resolution on convective boundary-layer statistics and structures generated by large-eddy simulation. J. Atmos. Sci., 68, 23952415, https://doi.org/10.1175/JAS-D-10-05010.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., and J. C. McWilliams, 2018: Frontogenesis and frontal arrest of a dense filament in the oceanic surface boundary layer. J. Fluid Mech., 837, 341380, https://doi.org/10.1017/jfm.2017.833.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., and J. C. McWilliams, 2019: Langmuir turbulence and filament frontogenesis in the oceanic surface boundary layer. J. Fluid Mech., 879, 512553, https://doi.org/10.1017/jfm.2019.655.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., J. C. McWilliams, and C.-H. Moeng, 1994: A subgrid-scale model for large-eddy simulation of planetary boundary-layer flows. Bound.-Layer Meteor., 71, 247276, https://doi.org/10.1007/BF00713741.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., J. C. McWilliams, and C.-H. Moeng, 1996: A grid nesting method for large-eddy simulation of planetary boundary layer flows. Bound.-Layer Meteor., 80, 167202, https://doi.org/10.1007/BF00119016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., C.-H. Moeng, B. Stevens, D. H. Lenschow, and S. D. Mayor, 1998: Structure of the entrainment zone capping the convective atmospheric boundary layer. J. Atmos. Sci., 55, 30423064, https://doi.org/10.1175/1520-0469(1998)055<3042:SOTEZC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., J. C. McWilliams, and E. G. Patton, 2014: Large-eddy simulation of marine atmospheric boundary layers above a spectrum of moving waves. J. Atmos. Sci., 71, 40014027, https://doi.org/10.1175/JAS-D-14-0095.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., J. C. McWilliams, J. C. Weil, E. G. Patton, and H. J. S. Fernando, 2020: Marine atmospheric boundary layers above heterogeneous SST: Across-front winds. J. Atmos. Sci., 77, 42514275, https://doi.org/10.1175/JAS-D-20-0062.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sykes, R. I., and D. S. Henn, 1989: Large-eddy simulation of turbulent sheared convection. J. Atmos. Sci., 46, 11061118, https://doi.org/10.1175/1520-0469(1989)046<1106:LESOTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, J. R., and R. Ferrari, 2010: Buoyancy and wind-driven convection at mixed layer density fronts. J. Phys. Oceanogr., 40, 12221242, https://doi.org/10.1175/2010JPO4365.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomas, L. N., and C. Lee, 2005: Intensification of ocean fronts by down-front winds. J. Phys. Oceanogr., 35, 10861102, https://doi.org/10.1175/JPO2737.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Q., and Coauthors, 2018: CASPER: Coupled Air–Sea Processes and Electromagnetic Ducting Research. Bull. Amer. Meteor. Soc., 99, 14491471, https://doi.org/10.1175/BAMS-D-16-0046.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wenegrat, J. O., and R. S. Arthur, 2018: Response of the atmospheric boundary layer to submesoscale sea-surface temperature fronts. Geophys. Res. Lett., 45, 13 50513 512, https://doi.org/10.1029/2018GL081034.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wijesekera, H. W., and Coauthors, 2016: ASIRI: An ocean–atmosphere initiative for Bay of Bengal. Bull. Amer. Meteor. Soc., 97, 18591884, https://doi.org/10.1175/BAMS-D-14-00197.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Willis, G. E., and J. W. Deardorff, 1976: A laboratory model of diffusion into the convective planetary boundary layer. Quart. J. Roy. Meteor. Soc., 102, 427445, https://doi.org/10.1002/qj.49710243212.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wyngaard, J. C., 2010: Turbulence in the Atmosphere. Cambridge University Press, 393 pp.

    • Crossref
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 101 101 27
Full Text Views 32 32 8
PDF Downloads 41 41 12

Marine Boundary Layers above Heterogeneous SST: Alongfront Winds

View More View Less
  • 1 a National Center for Atmospheric Research, Boulder, Colorado
  • | 2 b Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California
  • | 3 c Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, South Bend, Indiana
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Turbulent flow in a weakly convective marine atmospheric boundary layer (MABL) driven by geostrophic winds Vg = 10 m s−1 and heterogeneous sea surface temperature (SST) is examined using fine-mesh large-eddy simulation (LES). The imposed SST heterogeneity is a single-sided warm or cold front with jumps Δθ = (2, −1.5) K varying over a horizontal x distance of 1 km characteristic of an upper-ocean mesoscale or submesoscale front. The geostrophic winds are oriented parallel to the SST isotherms (i.e., the winds are alongfront). Previously, Sullivan et al. examined a similar flow configuration but with geostrophic winds oriented perpendicular to the imposed SST isotherms (i.e., the winds were across-front). Results with alongfront and across-front winds differ in important ways. With alongfront winds, the ageostrophic surface wind is weak, about 5 times smaller than the geostrophic wind, and horizontal pressure gradients couple the SST front and the atmosphere in the momentum budget. With across-front winds, horizontal pressure gradients are weak and mean horizontal advection primarily balances vertical flux divergence. Alongfront winds generate persistent secondary circulations (SC) that modify the surface fluxes as well as turbulent fluxes in the MABL interior depending on the sign of Δθ. Warm and cold filaments develop opposing pairs of SC with a central upwelling or downwelling region between the cells. Cold filaments reduce the entrainment near the boundary layer top that can potentially impact cloud initiation. The surface-wind–SST-isotherm orientation is an important component of atmosphere–ocean coupling. The results also show frontogenetic tendencies in the MABL.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Peter P. Sullivan, pps@ucar.edu

Abstract

Turbulent flow in a weakly convective marine atmospheric boundary layer (MABL) driven by geostrophic winds Vg = 10 m s−1 and heterogeneous sea surface temperature (SST) is examined using fine-mesh large-eddy simulation (LES). The imposed SST heterogeneity is a single-sided warm or cold front with jumps Δθ = (2, −1.5) K varying over a horizontal x distance of 1 km characteristic of an upper-ocean mesoscale or submesoscale front. The geostrophic winds are oriented parallel to the SST isotherms (i.e., the winds are alongfront). Previously, Sullivan et al. examined a similar flow configuration but with geostrophic winds oriented perpendicular to the imposed SST isotherms (i.e., the winds were across-front). Results with alongfront and across-front winds differ in important ways. With alongfront winds, the ageostrophic surface wind is weak, about 5 times smaller than the geostrophic wind, and horizontal pressure gradients couple the SST front and the atmosphere in the momentum budget. With across-front winds, horizontal pressure gradients are weak and mean horizontal advection primarily balances vertical flux divergence. Alongfront winds generate persistent secondary circulations (SC) that modify the surface fluxes as well as turbulent fluxes in the MABL interior depending on the sign of Δθ. Warm and cold filaments develop opposing pairs of SC with a central upwelling or downwelling region between the cells. Cold filaments reduce the entrainment near the boundary layer top that can potentially impact cloud initiation. The surface-wind–SST-isotherm orientation is an important component of atmosphere–ocean coupling. The results also show frontogenetic tendencies in the MABL.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Peter P. Sullivan, pps@ucar.edu
Save