• Aemisegger, F., 2018: On the link between the North Atlantic storm track and precipitation deuterium excess in Reykjavik. Atmos. Sci. Lett., 19, e865, https://doi.org/10.1002/asl.865.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aemisegger, F., and L. Papritz, 2018: A climatology of strong large-scale ocean evaporation events. Part I: Identification, global distribution, and associated climate conditions. J. Climate, 31, 72877312, https://doi.org/10.1175/JCLI-D-17-0591.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Binder, H., M. Boettcher, H. Joos, and H. Wernli, 2016: The role of warm conveyor belts for the intensification of extratropical cyclones in Northern Hemisphere winter. J. Atmos. Sci., 73, 39974020, https://doi.org/10.1175/JAS-D-15-0302.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boutle, I., R. Beare, S. Belcher, A. Brown, and R. Plant, 2010: The moist boundary layer under a mid-latitude weather system. Bound.-Layer Meteor., 134, 367386, https://doi.org/10.1007/s10546-009-9452-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Browning, K. A., 1990: Organization of clouds and precipitation in extratropical cyclones. Extratropical Cyclones: The Erik Palmen Memorial Volume, C. W. Newton and E. O. Holopainen, Eds., Amer. Meteor. Soc., 129–153.

    • Crossref
    • Export Citation
  • Browning, K. A., and N. M. Roberts, 1994: Structure of a frontal cyclone. Quart. J. Roy. Meteor. Soc., 120, 15351557, https://doi.org/10.1002/qj.49712052006.

    • Search Google Scholar
    • Export Citation
  • Bui, H., and T. Spengler, 2021: On the influence of sea surface temperature distributions on the development of extratropical cyclones. J. Atmos. Sci., 78, 11731188, https://doi.org/10.1175/JAS-D-20-0137.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • C̆ampa, J., 2012: Potential vorticity and moisture in extratropical cyclones: climatology and sensitivity experiments. Ph.D. thesis, Johannes Gutenberg-Universität Mainz, 115 pp., https://openscience.ub.uni-mainz.de/bitstream/20.500.12030/2762/1/3497.pdf.

  • C̆ampa, J., and H. Wernli, 2012: A PV perspective on the vertical structure of mature midlatitude cyclones in the northern hemisphere. J. Atmos. Sci., 69, 725740, https://doi.org/10.1175/JAS-D-11-050.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carrera, M. L., J. R. Gyakum, and D.-L. Zhang, 1999: A numerical case study of secondary marine cyclogenesis sensitivity to initial error and varying physical processes. Mon. Wea. Rev., 127, 641660, https://doi.org/10.1175/1520-0493(1999)127<0641:ANCSOS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Catto, J. L., and S. Pfahl, 2013: The importance of fronts for extreme precipitation. J. Geophys. Res. Atmos., 118, 10 79110 801, https://doi.org/10.1002/jgrd.50852.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Catto, J. L., C. Jakob, G. Berry, and N. Nicholls, 2012: Relating global precipitation to atmospheric fronts. Geophys. Res. Lett., 39, L10805, https://doi.org/10.1029/2012GL051736.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., and S. Song, 2006: The seasonal cycles in the distribution of precipitation around cyclones in the western North Pacific and Atlantic. J. Atmos. Sci., 63, 815839, https://doi.org/10.1175/JAS3661.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coronel, B., D. Ricard, G. Rivière, and P. Arbogast, 2015: Role of moist processes in the tracks of idealized midlatitude surface cyclones. J. Atmos. Sci., 72, 29792996, https://doi.org/10.1175/JAS-D-14-0337.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dacre, H. F., O. Martínez-Alvarado, M. A. Stringer, and D. A. Lavers, 2015: How do atmospheric rivers form? Bull. Amer. Meteor. Soc., 96, 12431255, https://doi.org/10.1175/BAMS-D-14-00031.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dacre, H. F., O. Martínez-Alvarado, and C. O. Mbengue, 2019: Linking atmospheric rivers and warm conveyor belt airflows. J. Hydrometeor., 20, 11831196, https://doi.org/10.1175/JHM-D-18-0175.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, C. A., E. D. Grell, and M. A. Shapiro, 1996: The balanced dynamical nature of a rapidly intensifying oceanic cyclone. Mon. Wea. Rev., 124, 326, https://doi.org/10.1175/1520-0493(1996)124<0003:TBDNOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Vries, A. J., 2021: A global climatological perspective on the importance of Rossby wave breaking and intense moisture transport for extreme precipitation events. Wea. Climate Dyn., 2, 129161, https://doi.org/10.5194/wcd-2-129-2021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dufour, A., O. Zolina, and S. K. Gulev, 2016: Atmospheric moisture transport to the Arctic: Assessment of reanalyses and analysis of transport components. J. Climate, 29, 50615081, https://doi.org/10.1175/JCLI-D-15-0559.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Field, P. R., and R. Wood, 2007: Precipitation and cloud structure in midlatitude cyclones. J. Climate, 20, 233254, https://doi.org/10.1175/JCLI3998.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fink, A. H., S. Pohle, J. G. Pinto, and P. Knippertz, 2012: Diagnosing the influence of diabatic processes on the explosive deepening of extratropical cyclones. Geophys. Res. Lett., 39, L07803, https://doi.org/10.1029/2012GL051025.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giordani, H., and G. Caniaux, 2001: Sensitivity of cyclogenesis to sea surface temperature in the northwestern Atlantic. Mon. Wea. Rev., 129, 12731295, https://doi.org/10.1175/1520-0493(2001)129<1273:SOCTSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guan, B., D. E. Waliser, and F. M. Ralph, 2020: A multimodel evaluation of the water vapor budget in atmospheric rivers. Ann. N. Y. Acad. Sci., 1472, 139154, https://doi.org/10.1111/nyas.14368.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gyakum, J. R., and R. E. Danielson, 2000: Analysis of meteorological precursors to ordinary and explosive cyclogenesis in the western North Pacific. Mon. Wea. Rev., 128, 851863, https://doi.org/10.1175/1520-0493(2000)128<0851:AOMPTO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hawcroft, M. K., L. C. Shaffrey, K. I. Hodges, and H. F. Dacre, 2012: How much Northern Hemisphere precipitation is associated with extratropical cyclones? Geophys. Res. Lett., 39, L24809, https://doi.org/10.1029/2012GL053866.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

  • Hoskins, B., and M. Pedder, 1980: The diagnosis of middle latitude synoptic development. Quart. J. Roy. Meteor. Soc., 106, 707719, https://doi.org/10.1002/qj.49710645004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knippertz, P., and H. Wernli, 2010: A Lagrangian climatology of tropical moisture exports to the Northern Hemispheric extratropics. J. Climate, 23, 9871003, https://doi.org/10.1175/2009JCLI3333.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuo, Y.-H., and R. J. R. S. Low-Nam, 1991: Effects of surface energy fluxes during the early development and rapid intensification stages of seven explosive cyclones in the western Atlantic. Mon. Wea. Rev., 119, 457476, https://doi.org/10.1175/1520-0493(1991)119<0457:EOSEFD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laederach, A., and H. Sodemann, 2016: A revised picture of the atmospheric moisture residence time. Geophys. Res. Lett., 43, 924933, https://doi.org/10.1002/2015GL067449.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ludwig, P., J. G. Pinto, M. Reyers, and S. L. Gray, 2014: The role of anomalous SST and surface fluxes over the southeastern North Atlantic in the explosive development of Windstorm Xynthia. Quart. J. Roy. Meteor. Soc., 140, 17291741, https://doi.org/10.1002/qj.2253.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madonna, E., H. Wernli, H. Joos, and O. Martius, 2014: Warm conveyor belts in the ERA-Interim dataset (1979–2010). Part I: Climatology and potential vorticity evolution. J. Climate, 27, 326, https://doi.org/10.1175/JCLI-D-12-00720.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Naakka, T., T. Nygård, T. Vihma, J. Sedlar, and R. G. Graversen, 2019: Atmospheric moisture transport between mid-latitudes and the Arctic: Regional, seasonal and vertical distributions. Int. J. Climatol., 39, 28622879, https://doi.org/10.1002/joc.5988.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., and M. A. Shapiro, 1993: The life cycle of an extratropical marine cyclone. Part I: Frontal-cyclone evolution and thermodynamic air–sea interaction. Mon. Wea. Rev., 121, 21532176, https://doi.org/10.1175/1520-0493(1993)121<2153:TLCOAE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Norris, J. R., and Coauthors, 2020: The observed water vapor budget in an atmospheric river over the northeast Pacific. J. Hydrometeor., 21, 26552673, https://doi.org/10.1175/JHM-D-20-0048.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nuss, W. A., 1989: Air–sea interaction influences on the structure and intensification of an idealized marine cyclone. Mon. Wea. Rev., 117, 351369, https://doi.org/10.1175/1520-0493(1989)117<0351:ASIIOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Papritz, L., and H. Sodemann, 2018: Characterizing the local and intense water cycle during a cold air outbreak in the Nordic seas. Mon. Wea. Rev., 146, 35673588, https://doi.org/10.1175/MWR-D-18-0172.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Papritz, L., S. Pfahl, I. Rudeva, I. Simmonds, H. Sodemann, and H. Wernli, 2014: The role of extratropical cyclones and fronts for Southern Ocean freshwater fluxes. J. Climate, 27, 62056224, https://doi.org/10.1175/JCLI-D-13-00409.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Papritz, L., S. Pfahl, H. Sodemann, and H. Wernli, 2015: A climatology of cold air outbreaks and their impact on air–sea heat fluxes in the high-latitude South Pacific. J. Climate, 28, 342364, https://doi.org/10.1175/JCLI-D-14-00482.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peixoto, J., and A. H. Oort, 1992: Physics of Climate. American Institute of Physics, 520 pp.

  • Pfahl, S., and H. Wernli, 2012: Quantifying the relevance of cyclones for precipitation extremes. J. Climate, 25, 67706780, https://doi.org/10.1175/JCLI-D-11-00705.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pfahl, S., and M. Sprenger, 2016: On the relationship between extratropical cyclone precipitation and intensity. Geophys. Res. Lett., 43, 17521758, https://doi.org/10.1002/2016GL068018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pfahl, S., E. Madonna, M. Boettcher, H. Joos, and H. Wernli, 2014: Warm conveyor belts in the ERA-Interim dataset (1979–2010). Part II: Moisture origin and relevance for precipitation. J. Climate, 27, 2740, https://doi.org/10.1175/JCLI-D-13-00223.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., P. J. Neiman, G. N. Kiladis, K. Weickmann, and D. W. Reynolds, 2011: A multiscale observational case study of a Pacific atmospheric river exhibiting tropical–extratropical connections and a mesoscale frontal wave. Mon. Wea. Rev., 139, 11691189, https://doi.org/10.1175/2010MWR3596.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raveh-Rubin, S., 2017: Dry intrusions: Lagrangian climatology and dynamical impact on the planetary boundary layer. J. Climate, 30, 66616682, https://doi.org/10.1175/JCLI-D-16-0782.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reed, R. J., and M. D. Albright, 1986: A case study of explosive cyclogenesis in the eastern Pacific. Mon. Wea. Rev., 114, 22972319, https://doi.org/10.1175/1520-0493(1986)114<2297:ACSOEC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reed, R. J., M. T. Stoelinga, and Y.-H. Kuo, 1992: A model-aided study of the origin and evolution of the anomalously high potential vorticity in the inner region of a rapidly deepening marine cyclone. Mon. Wea. Rev., 120, 893913, https://doi.org/10.1175/1520-0493(1992)120<0893:AMASOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rossa, A. M., H. Wernli, and H. C. Davies, 2000: Growth and decay of an extra-tropical cyclone’s PV-tower. Meteor. Atmos. Phys., 73, 139156, https://doi.org/10.1007/s007030050070.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rudeva, I., and S. K. Gulev, 2011: Composite analysis of North Atlantic extratropical cyclones in NCEP–NCAR reanalysis data. Mon. Wea. Rev., 139, 14191446, https://doi.org/10.1175/2010MWR3294.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sodemann, H., 2020: Beyond turnover time: Constraining the lifetime distribution of water vapor from simple and complex approaches. J. Atmos. Sci., 77, 413433, https://doi.org/10.1175/JAS-D-18-0336.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sodemann, H., and A. Stohl, 2013: Moisture origin and meridional transport in atmospheric rivers and their association with multiple cyclones. Mon. Wea. Rev., 141, 28502868, https://doi.org/10.1175/MWR-D-12-00256.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sodemann, H., C. Schwierz, and H. Wernli, 2008: Interannual variability of Greenland winter precipitation sources: Lagrangian moisture diagnostic and North Atlantic Oscillation influence. J. Geophys. Res., 113, D03107, https://doi.org/10.1029/2007JD008503.

    • Search Google Scholar
    • Export Citation
  • Sodemann, H., and Coauthors, 2020: Structure, process, and mechanism. Atmospheric Rivers, F. M. Ralph et al., Eds., Springer, 15–43.

    • Crossref
    • Export Citation
  • Sorteberg, A., and J. E. Walsh, 2008: Seasonal cyclone variability at 70°N and its impact on moisture transport into the Arctic. Tellus, 60A, 570586, https://doi.org/10.1111/j.1600-0870.2008.00314.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sprenger, M., and H. Wernli, 2015: The LAGRANTO Lagrangian analysis tool—Version 2.0. Geosci. Model Dev., 8, 25692586, https://doi.org/10.5194/gmd-8-2569-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sprenger, M., and Coauthors, 2017: Global climatologies of Eulerian and Lagrangian flow features based on ERA-Interim. Bull. Amer. Meteor. Soc., 98, 17391748, https://doi.org/10.1175/BAMS-D-15-00299.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stoelinga, M. T., 1996: A potential vorticity-based study of the role of diabatic heating and friction in a numerically simulated baroclinic cyclone. Mon. Wea. Rev., 124, 849874, https://doi.org/10.1175/1520-0493(1996)124<0849:APVBSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sutcliffe, R. C., 1947: A contribution to the problem of development. Quart. J. Roy. Meteor. Soc., 73, 370383, https://doi.org/10.1002/qj.49707331710.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tamarin, T., and Y. Kaspi, 2016: The poleward motion of extratropical cyclones from a potential vorticity tendency analysis. J. Atmos. Sci., 73, 16871707, https://doi.org/10.1175/JAS-D-15-0168.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thurnherr, I., and Coauthors, 2021: The role of air–sea fluxes for the water vapour isotope signals in the cold and warm sectors of extratropical cyclones over the Southern Ocean. Wea. Climate Dyn., 2, 331357, https://doi.org/10.5194/wcd-2-331-2021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tilinina, N., A. Gavrikov, and S. K. Gulev, 2018: Association of the North Atlantic surface turbulent heat fluxes with midlatitude cyclones. Mon. Wea. Rev., 146, 36913715, https://doi.org/10.1175/MWR-D-17-0291.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K., and C. Guillemot, 1998: Evaluation of the atmospheric moisture and hydrological cycle in the NCEP/NCAR reanalyses. Climate Dyn., 14, 213231, https://doi.org/10.1007/s003820050219.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uccellini, L. W., 1990: Processes contributing to the rapid development of extratropical cyclones. Extratropical Cyclones: The Erik Palmen Memorial Volume, C. W. Newton and E. O. Holopainen, Eds., Amer. Meteor. Soc., 81–105.

    • Crossref
    • Export Citation
  • Vannière, B., A. Czaja, H. Dacre, and T. Woollings, 2017: A “cold path” for the Gulf Stream–troposphere connection. J. Climate, 30, 13631379, https://doi.org/10.1175/JCLI-D-15-0749.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wernli, H., 1997: A Lagrangian-based analysis of extratropical cyclones. II: A detailed case-study. Quart. J. Roy. Meteor. Soc., 123, 16771706, https://doi.org/10.1002/qj.49712354211.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wernli, H., and H. C. Davies, 1997: A Lagrangian-based analysis of extratropical cyclones. I: The method and some applications. Quart. J. Roy. Meteor. Soc., 123, 467489, https://doi.org/10.1002/qj.49712353811.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wernli, H., and C. Schwierz, 2006: Surface cyclones in the ERA-40 dataset (1958–2001). Part I: Novel identification method and global climatology. J. Atmos. Sci., 63, 24862507, https://doi.org/10.1175/JAS3766.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winschall, A., S. Pfahl, H. Sodemann, and H. Wernli, 2014a: Comparison of Eulerian and Lagrangian moisture source diagnostics—The flood event in eastern Europe in May 2010. Atmos. Chem. Phys., 14, 66056619, https://doi.org/10.5194/acp-14-6605-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winschall, A., H. Sodemann, S. Pfahl, and H. Wernli, 2014b: How important is intensified evaporation for Mediterranean precipitation extremes? J. Geophys. Res. Atmos., 119, 52405256, https://doi.org/10.1002/2013JD021175.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zolina, O., and S. K. Gulev, 2003: Synoptic variability of ocean–atmosphere turbulent fluxes associated with atmospheric cyclones. J. Climate, 16, 27172734, https://doi.org/10.1175/1520-0442(2003)016<2717:SVOOTF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 154 154 29
Full Text Views 87 87 23
PDF Downloads 108 108 37

Sources and Transport Pathways of Precipitating Waters in Cold-Season Deep North Atlantic Cyclones

View More View Less
  • 1 a Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Extratropical cyclones are responsible for a large share of precipitation at midlatitudes and they profoundly impact the characteristics of the water cycle. In this study, we use the ERA5 and a cyclone tracking scheme combined with a Lagrangian diagnostic to identify the sources of moisture precipitating close to the center of 676 deep North Atlantic cyclones in winters 1979–2018. Moisture uptakes occur predominantly in originally cold and dry air heated over the North Atlantic, in particular, over the warm waters of the Gulf Stream, whereas more remote sources from land or the subtropics are less important. Analyzing the dynamical environment of moisture uptakes, we find that moisture precipitating during the cyclone intensification phase originates in the precyclone environment in the cold sectors of preceding cyclones and the cyclone–anticyclone interaction zone. These moisture uptakes are linked to the cyclone’s ascent regions via the so-called feeder airstream, a northeasterly cyclone-relative flow that arises due to the cyclone propagation exceeding the advection by the low-level background flow. During the decay phase, more and more of the moisture originates in the cyclone’s own cold sector. Consequently, the residence time of precipitating waters in cyclones is short (median of ≈2 days) and transport distances are typically less than the distance traveled by the cyclone itself. These findings emphasize the importance of preconditioning by surface fluxes in the precyclone environment for the formation of precipitation in cyclones and suggest an important role for the hand-over of moisture from one cyclone to the next within a storm track.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Lukas Papritz, lukas.papritz@env.ethz.ch

Abstract

Extratropical cyclones are responsible for a large share of precipitation at midlatitudes and they profoundly impact the characteristics of the water cycle. In this study, we use the ERA5 and a cyclone tracking scheme combined with a Lagrangian diagnostic to identify the sources of moisture precipitating close to the center of 676 deep North Atlantic cyclones in winters 1979–2018. Moisture uptakes occur predominantly in originally cold and dry air heated over the North Atlantic, in particular, over the warm waters of the Gulf Stream, whereas more remote sources from land or the subtropics are less important. Analyzing the dynamical environment of moisture uptakes, we find that moisture precipitating during the cyclone intensification phase originates in the precyclone environment in the cold sectors of preceding cyclones and the cyclone–anticyclone interaction zone. These moisture uptakes are linked to the cyclone’s ascent regions via the so-called feeder airstream, a northeasterly cyclone-relative flow that arises due to the cyclone propagation exceeding the advection by the low-level background flow. During the decay phase, more and more of the moisture originates in the cyclone’s own cold sector. Consequently, the residence time of precipitating waters in cyclones is short (median of ≈2 days) and transport distances are typically less than the distance traveled by the cyclone itself. These findings emphasize the importance of preconditioning by surface fluxes in the precyclone environment for the formation of precipitation in cyclones and suggest an important role for the hand-over of moisture from one cyclone to the next within a storm track.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Lukas Papritz, lukas.papritz@env.ethz.ch

Supplementary Materials

    • Supplemental Materials (PDF 1.32 MB)
Save