• Aberson, S. D., M. T. Montgomery, M. Bell, and M. Black, 2006: Hurricane Isabel (2003): New insights into the physics of intense storms. Part II: Extreme localized wind. Bull. Amer. Meteor. Soc., 87, 13491354, https://doi.org/10.1175/BAMS-87-10-1349.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andreas, E. L., L. Mahrt, and D. Vickers, 2012: A new drag relation for aerodynamically rough flow over the ocean. J. Atmos. Sci., 69, 25202537, https://doi.org/10.1175/JAS-D-11-0312.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bell, M. M., M. T. Montgomery, and K. A. Emanuel, 2012: Air–sea enthalpy and momentum exchange at major hurricane wind speeds observed during CBLAST. J. Atmos. Sci., 69, 31973222, https://doi.org/10.1175/JAS-D-11-0276.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berg, J., E. G. Patton, and P. P. Sullivan, 2020: Large-eddy simulation of conditionally neutral boundary layers: A mesh resolution sensitivity study. J. Atmos. Sci., 77, 19691991, https://doi.org/10.1175/JAS-D-19-0252.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blackadar, A. K., 1962: The vertical distribution of wind and turbulent exchange in a neutral atmosphere. J. Geophys. Res., 67, 30953102, https://doi.org/10.1029/JZ067i008p03095.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Braun, S. A., and W.-K. Tao, 2000: Sensitivity of high-resolution simulations of Hurricane Bob (1991) to planetary boundary layer parameterizations. Mon. Wea. Rev., 128, 39413961, https://doi.org/10.1175/1520-0493(2000)129<3941:SOHRSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and J. M. Fritsch, 2002: A benchmark simulation for moist nonhydrostatic numerical models. Mon. Wea. Rev., 130, 29172928, https://doi.org/10.1175/1520-0493(2002)130<2917:ABSFMN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and R. Rotunno, 2009: The maximum intensity of tropical cyclones in axisymmetric numerical model simulations. Mon. Wea. Rev., 137, 17701789, https://doi.org/10.1175/2008MWR2709.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., R. P. Worsnop, J. K. Lundquist, and J. A. Zhang, 2017: A simple method for simulating wind profiles in the boundary layer of tropical cyclones. Bound.-Layer Meteor., 162, 475502, https://doi.org/10.1007/s10546-016-0207-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bu, Y. P., R. G. Fovell, and K. L. Corbosiero, 2017: The influences of boundary layer mixing and cloud-radiative forcing on tropical cyclone size. J. Atmos. Sci., 74, 12731292, https://doi.org/10.1175/JAS-D-16-0231.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, X., K. Zhao, W.-C. Lee, B. Jong-Dao Jou, M. Xue, and P. R. Harasti, 2013: The improvement to the environmental wind and tropical cyclone circulation retrievals with the modified GBVTD (MGBVTD) technique. J. Appl. Meteor. Climatol., 52, 24932508, https://doi.org/10.1175/JAMC-D-13-031.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cione, J. J., 2015: The relative roles of the ocean and atmosphere as revealed by buoy air–sea observations in hurricanes. Mon. Wea. Rev., 143, 904913, https://doi.org/10.1175/MWR-D-13-00380.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cione, J. J., P. G. Black, and S. H. Houston, 2000: Surface observations in the hurricane environment. Mon. Wea. Rev., 128, 15501561, https://doi.org/10.1175/1520-0493(2000)128<1550:SOITHE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cione, J. J., and Coauthors, 2020: Eye of the storm: Observing hurricanes with a small unmanned aircraft system. Bull. Amer. Meteor. Soc., 101, E186E205, https://doi.org/10.1175/BAMS-D-19-0169.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1980: Stratocumulus-capped mixed layers derived from a three-dimensional model. Bound.-Layer Meteor., 18, 495527, https://doi.org/10.1007/BF00119502.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eliassen, A., 1971: On the Ekman layer in a circular vortex. J. Meteor. Soc. Japan, 49A, 784789, https://doi.org/10.2151/jmsj1965.49A.0_784.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Foster, R. C., 2005: Why rolls are prevalent in the hurricane boundary layer. J. Atmos. Sci., 62, 26472661, https://doi.org/10.1175/JAS3475.1.

  • Foster, R. C., 2009: Boundary-layer similarity under an axisymmetric, gradient wind vortex. Bound.-Layer Meteor., 131, 321344, https://doi.org/10.1007/s10546-009-9379-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • French, J. R., W. M. Drennan, J. A. Zhang, and P. G. Black, 2007: Turbulent fluxes in the hurricane boundary layer. Part I: Momentum flux. J. Atmos. Sci., 64, 10891102, https://doi.org/10.1175/JAS3887.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Green, B. W., and F. Zhang, 2015: Idealized large-eddy simulations of a tropical cyclone–like boundary layer. J. Atmos. Sci., 72, 17431764, https://doi.org/10.1175/JAS-D-14-0244.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guimond, S. R., J. A. Zhang, J. W. Sapp, and S. J. Frasier, 2018: Coherent turbulence in the boundary layer of Hurricane Rita (2005) during an eyewall replacement cycle. J. Atmos. Sci., 75, 30713093, https://doi.org/10.1175/JAS-D-17-0347.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haus, B. K., D. Jeong, M. A. Donelan, J. A. Zhang, and I. Savelyev, 2010: Relative rates of sea-air heat transfer and frictional drag in very high winds. Geophys. Res. Lett., 37, L07802, https://doi.org/10.1029/2009GL042206.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hock, T. F., and J. L. Franklin, 1999: The NCAR GPS dropwindsonde. Bull. Amer. Meteor. Soc., 80, 407420, https://doi.org/10.1175/1520-0477(1999)080<0407:TNGD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hughes, L. A., 1952: On the low-level structure of tropical storms. J. Meteor., 9, 422428, https://doi.org/10.1175/1520-0469(1952)009<0422:OTLLSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kapoor, A., and Coauthors, 2020: Hurricane eyewall winds and structural response of wind turbines. Wind Energ. Sci., 5, 89104, https://doi.org/10.5194/wes-5-89-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kepert, J., 2001: The dynamics of boundary layer jets within the tropical cyclone core. Part I: Linear theory. J. Atmos. Sci., 58, 24692484, https://doi.org/10.1175/1520-0469(2001)058<2469:TDOBLJ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kepert, J., 2012: Choosing a boundary layer parameterization for tropical cyclone modeling. Mon. Wea. Rev., 140, 14271445, https://doi.org/10.1175/MWR-D-11-00217.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kosović, B., and J. A. Curry, 2000: A large eddy simulation study of a quasi-steady, stably stratified atmospheric boundary layer. J. Atmos. Sci., 57, 10521068, https://doi.org/10.1175/1520-0469(2000)057<1052:ALESSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kurihara, Y., and R. E. Tuleya, 1974: Structure of a tropical cyclone developed in a three-dimensional numerical simulation model. J. Atmos. Sci., 31, 893919, https://doi.org/10.1175/1520-0469(1974)031<0893:SOATCD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, X., and Z. Pu, 2021: Vertical eddy diffusivity parameterization based on a large-eddy simulation and its impact on prediction of hurricane landfall. Geophys. Res. Lett., 48, e2020GL090703, https://doi.org/10.1029/2020GL090703.

    • Crossref
    • Export Citation
  • Lorsolo, S., J. L. Schroeder, P. Dodge, and F. Marks Jr., 2008: An observational study of hurricane boundary layer small-scale coherent structures. Mon. Wea. Rev., 136, 28712893, https://doi.org/10.1175/2008MWR2273.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mallen, K. J., M. T. Montgomery, and B. Wang, 2005: Reexamining the near-core radial structure of the tropical cyclone primary circulation: Implications for vortex resiliency. J. Atmos. Sci., 62, 408425,https://doi.org/10.1175/JAS-3377.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marks, F. D., P. G. Black, M. T. Montgomery, and R. W. Burpee, 2008: Structure of the eye and eyewall of Hurricane Hugo (1989). Mon. Wea. Rev., 136, 12371259, https://doi.org/10.1175/2007MWR2073.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mason, P. J., and D. J. Thomson, 1992: Stochastic backscatter in large-eddy simulations of boundary layers. J. Fluid Mech., 242, 5178, https://doi.org/10.1017/S0022112092002271.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moeng, C.-H., and P. P. Sullivan, 1994: A comparison of shear- and buoyancy-driven planetary boundary layer flows. J. Atmos. Sci., 51, 9991022, https://doi.org/10.1175/1520-0469(1994)051<0999:ACOSAB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, I., S. Businger, F. Marks, P. Dodge, and J. A. Businger, 2005: An observational case for the prevalence of roll vortices in the hurricane boundary layer. J. Atmos. Sci., 62, 26622673, https://doi.org/10.1175/JAS3508.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., D. P. Stern, and J. A. Zhang, 2009: Evaluation of planetary boundary layer parameterizations in tropical cyclones by comparison of in situ observations and high-resolution simulations of Hurricane Isabel (2003). Part II: Inner-core boundary layer and eyewall structure. Mon. Wea. Rev., 137, 36753698, https://doi.org/10.1175/2009MWR2786.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Brien, J. J., 1970: A note on the vertical structure of the eddy exchange coefficient in the planetary boundary layer. J. Atmos. Sci., 27, 12131215, https://doi.org/10.1175/1520-0469(1970)027<1213:ANOTVS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotunno, R., Y. Chen, W. Wang, C. Davis, J. Dudhia, and G. J. Holland, 2009: Large-eddy simulation of an idealized tropical cyclone. Bull. Amer. Meteor. Soc., 90, 17831788, https://doi.org/10.1175/2009BAMS2884.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. K., and G. L. Thomsen, 2010: Dependence of tropical-cyclone intensification on the boundary-layer representation in a numerical model. Quart. J. Roy. Meteor. Soc., 136, 16711685, https://doi.org/10.1002/qj.687.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. K., and M. T. Montgomery, 2015: Toward clarity on understanding tropical cyclone intensification. J. Atmos. Sci., 72, 30203031, https://doi.org/10.1175/JAS-D-15-0017.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stern, D. P., and G. H. Bryan, 2018: Using simulated dropsondes to understand extreme updrafts and wind speeds in tropical cyclones. Mon. Wea. Rev., 146, 39013925, https://doi.org/10.1175/MWR-D-18-0041.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stern, D. P., G. H. Bryan, and S. D. Aberson, 2016: Extreme low-level updrafts and wind speeds measured by dropsondes in tropical cyclones. Mon. Wea. Rev., 144, 21772204, https://doi.org/10.1175/MWR-D-15-0313.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., and E. G. Patton, 2011: The effect of mesh resolution on convective boundary layer statistics and structures generated by large-eddy simulation. J. Atmos. Sci., 68, 23952415, https://doi.org/10.1175/JAS-D-10-05010.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., J. C. McWilliams, and C.-H. Moeng, 1994: A subgrid-scale model for large-eddy simulation of planetary boundary-layer flows. Bound.-Layer Meteor., 71, 247276, https://doi.org/10.1007/BF00713741.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Worsnop, R. P., G. H. Bryan, J. K. Lundquist, and J. A. Zhang, 2017: Using large-eddy simulations to define spectral and coherence characteristics of the hurricane boundary layer for wind-energy applications. Bound.-Layer Meteor., 165, 5586, https://doi.org/10.1007/s10546-017-0266-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, L., Q. Liu, and Y. Li, 2018: Prevalence of tornado-scale vortices in the tropical cyclone eyewall. Proc. Natl. Acad. Sci. USA, 115, 83078310, https://doi.org/10.1073/pnas.1807217115.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wurman, J., and J. Winslow, 1998: Intense sub-kilometer-scale boundary layer rolls observed in Hurricane Fran. Science, 280, 555557, https://doi.org/10.1126/science.280.5363.555.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, F., and Z. Pu, 2017: Effects of vertical eddy diffusivity parameterization on the evolution of landfalling hurricanes. J. Atmos. Sci., 74, 18791905, https://doi.org/10.1175/JAS-D-16-0214.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., and W. M. Drennan, 2012: An observational study of vertical eddy diffusivity in the hurricane boundary layer. J. Atmos. Sci., 69, 32233236, https://doi.org/10.1175/JAS-D-11-0348.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., F. D. Marks, M. T. Montgomery, and S. Lorsolo, 2011a: An estimation of turbulent characteristics in the low-level region of intense Hurricanes Allen (1980) and Hugo (1989). Mon. Wea. Rev., 139, 14471462, https://doi.org/10.1175/2010MWR3435.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., R. F. Rogers, D. S. Nolan, and F. D. Marks, 2011b: On the characteristic height scales of the hurricane boundary layer. Mon. Wea. Rev., 139, 25232535, https://doi.org/10.1175/MWR-D-10-05017.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., R. F. Rogers, P. D. Reasor, E. W. Uhlhorn, and F. D. Marks, 2013: Asymmetric hurricane boundary layer structure from dropsonde composites in relation to the environmental vertical wind shear. Mon. Wea. Rev., 141, 39683984, https://doi.org/10.1175/MWR-D-12-00335.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., D. S. Nolan, R. F. Rogers, and V. Tallapragada, 2015: Evaluating the impact of improvements in the boundary layer parameterization on hurricane intensity and structure forecasts in HWRF. Mon. Wea. Rev., 143, 31363155, https://doi.org/10.1175/MWR-D-14-00339.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, P., 2008: Simulation and parameterization of the turbulent transport in the hurricane boundary layer by large eddies. J. Geophys. Res., 113, D17104, https://doi.org/10.1029/2007JD009643.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 704 415 0
Full Text Views 326 204 24
PDF Downloads 355 203 24

A Framework for Simulating the Tropical Cyclone Boundary Layer Using Large-Eddy Simulation and Its Use in Evaluating PBL Parameterizations

Xiaomin ChenaNOAA/AOML/Hurricane Research Division, Miami, Florida

Search for other papers by Xiaomin Chen in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-9731-6989
,
George H. BryanbNational Center for Atmospheric Research, Boulder, Colorado

Search for other papers by George H. Bryan in
Current site
Google Scholar
PubMed
Close
,
Jun A. ZhangaNOAA/AOML/Hurricane Research Division, Miami, Florida
cCooperative Institute for Marine and Atmospheric Studies, University of Miami, Miami, Florida

Search for other papers by Jun A. Zhang in
Current site
Google Scholar
PubMed
Close
,
Joseph J. CioneaNOAA/AOML/Hurricane Research Division, Miami, Florida

Search for other papers by Joseph J. Cione in
Current site
Google Scholar
PubMed
Close
, and
Frank D. MarksaNOAA/AOML/Hurricane Research Division, Miami, Florida

Search for other papers by Frank D. Marks in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Boundary layer turbulent processes affect tropical cyclone (TC) structure and intensity change. However, uncertainties in the parameterization of the planetary boundary layer (PBL) under high-wind conditions remain challenging, mostly due to limited observations. This study presents and evaluates a framework of numerical simulation that can be used for a small-domain [O(5)-km] large-eddy simulation (LES) and single-column modeling (SCM) to study the TC boundary layer. The framework builds upon a previous study that uses a few input parameters to represent the TC vortex and adds a simple nudging term for temperature and moisture to account for the complex thermodynamic processes in TCs. The reference thermodynamic profiles at different wind speeds are retrieved from a composite analysis of dropsonde observations of mature hurricanes. Results from LES show that most of the turbulence kinetic energy and vertical momentum flux is associated with resolved processes when horizontal grid spacing is O(10) m. Comparison to observations of turbulence variables such as momentum flux, effective eddy viscosity, and turbulence length scale show that LES produces reasonable results but highlight areas where further observations are necessary. LES results also demonstrate that compared to a classic Ekman-type boundary layer, the TC boundary layer is shallower, develops steady conditions much quicker, and exhibits stronger wind speed near the surface. The utility of this framework is further highlighted by evaluating a first-order PBL parameterization, suggesting that an asymptotic turbulence length scale of 40 m produces a good match to LES results.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xiaomin Chen, xiaomin.chen@noaa.gov

Abstract

Boundary layer turbulent processes affect tropical cyclone (TC) structure and intensity change. However, uncertainties in the parameterization of the planetary boundary layer (PBL) under high-wind conditions remain challenging, mostly due to limited observations. This study presents and evaluates a framework of numerical simulation that can be used for a small-domain [O(5)-km] large-eddy simulation (LES) and single-column modeling (SCM) to study the TC boundary layer. The framework builds upon a previous study that uses a few input parameters to represent the TC vortex and adds a simple nudging term for temperature and moisture to account for the complex thermodynamic processes in TCs. The reference thermodynamic profiles at different wind speeds are retrieved from a composite analysis of dropsonde observations of mature hurricanes. Results from LES show that most of the turbulence kinetic energy and vertical momentum flux is associated with resolved processes when horizontal grid spacing is O(10) m. Comparison to observations of turbulence variables such as momentum flux, effective eddy viscosity, and turbulence length scale show that LES produces reasonable results but highlight areas where further observations are necessary. LES results also demonstrate that compared to a classic Ekman-type boundary layer, the TC boundary layer is shallower, develops steady conditions much quicker, and exhibits stronger wind speed near the surface. The utility of this framework is further highlighted by evaluating a first-order PBL parameterization, suggesting that an asymptotic turbulence length scale of 40 m produces a good match to LES results.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xiaomin Chen, xiaomin.chen@noaa.gov
Save