• Baldwin, M. P., and Coauthors, 2001: The quasi-biennial oscillation. Rev. Geophys., 39, 179229, https://doi.org/10.1029/1999RG000073.

  • Birner, T., and H. Bönisch, 2011: Residual circulation trajectories and transit times into the extratropical lowermost stratosphere. Atmos. Chem. Phys., 11, 817827, https://doi.org/10.5194/acp-11-817-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Butchart, N., 2014: The Brewer-Dobson circulation. Rev. Geophys., 52, 157184, https://doi.org/10.1002/2013RG000448.

  • Butchart, N., and Coauthors, 2018: Overview of experiment design and comparison of models participating in phase 1 of the SPARC Quasi-Biennial Oscillation initiative (QBOi). Geosci. Model Dev., 11, 10091032, https://doi.org/10.5194/gmd-11-1009-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chrysanthou, A., and Coauthors, 2019: The effect of atmospheric nudging on the stratospheric residual circulation in chemistry–climate models. Atmos. Chem. Phys., 19, 11 55911 586, https://doi.org/10.5194/acp-19-11559-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collins, W. J., and Coauthors, 2017: AerChemMIP: Quantifying the effects of chemistry and aerosols in CMIP6. Geosci. Model Dev., 10, 585607, https://doi.org/10.5194/gmd-10-585-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, N. A., S. M. Davis, R. W. Portmann, E. Ray, K. H. Rosenlof, and P. Yu, 2020: A comprehensive assessment of tropical stratospheric upwelling in the specified dynamics Community Earth System Model 1.2.2–Whole Atmosphere Community Climate Model (CESM (WACCM)). Geosci. Model Dev., 13, 717734, https://doi.org/10.5194/gmd-13-717-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dewan, E. M., 1981: Turbulent vertical transport due to thin intermittent mixing layers in the stratosphere and other stable fluids. Science, 211, 10411042, https://doi.org/10.1126/science.211.4486.1041.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donner, L. J., and Coauthors, 2011: The dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component AM3 of the GFDL global coupled model CM3. J. Climate, 24, 34843519, https://doi.org/10.1175/2011JCLI3955.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Engel, A., and Coauthors, 2009: Age of stratospheric air unchanged within uncertainties over the past 30 years. Nat. Geosci., 2, 2831, https://doi.org/10.1038/ngeo388.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eyring, V., and Coauthors, 2007: Multimodel projections of stratospheric ozone in the 21st century. J. Geophys. Res., 112, D16303, https://doi.org/10.1029/2006JD008332.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Friedl, L., 2007: Aerosols, air quality, and international policy. 36th Int. Seminar on Nuclear War and Planetary Emergencies, Erice, Italy, Ettore Majorana Foundation, 151–162, https://doi.org/10.1142/9789812709233_0023.

    • Crossref
    • Export Citation
  • Garny, H., T. Birner, H. Bönisch, and F. Bunzel, 2014: The effects of mixing on age of air. J. Geophys. Res. Atmos., 119, 70157034, https://doi.org/10.1002/2013JD021417.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gupta, A., E. P. Gerber, and P. H. Lauritzen, 2020: Numerical impacts on tracer transport: A proposed intercomparison test of atmospheric general circulation models. Quart. J. Roy. Meteor. Soc., 146, 39373964, https://doi.org/10.1002/qj.3881.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hall, T. M., and R. A. Plumb, 1994: Age as a diagnostic of stratospheric transport. J. Geophys. Res., 99, 1059–1070, https://doi.org/10.1029/93JD03192.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hall, T. M., D. W. Waugh, K. A. Boering, and R. A. Plumb, 1999: Evaluation of transport in stratospheric models. J. Geophys. Res., 104, 18 81518 839, https://doi.org/10.1029/1999JD900226.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haynes, P., and E. Shuckburgh, 2000: Effective diffusivity as a diagnostic of atmospheric transport: 1. Stratosphere. J. Geophys. Res., 105, 22 77722 794, https://doi.org/10.1029/2000JD900093.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haynes, P., M. E. McIntyre, T. G. Shepherd, C. J. Marks, and K. P. Shine, 1991: On the “downward control” of extratropical diabatic circulations by eddy-induced mean zonal forces. J. Atmos. Sci., 48, 651678, https://doi.org/10.1175/1520-0469(1991)048<0651:OTCOED>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., and M. J. Suarez, 1994: A proposal for the intercomparison of the dynamical cores of atmospheric general circulation models. Bull. Amer. Meteor. Soc., 75, 18251830, https://doi.org/10.1175/1520-0477(1994)075<1825:APFTIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holton, J. R., P. H. Haynes, M. E. McIntyre, A. R. Douglass, R. B. Rood, and L. Pfister, 1995: Stratosphere-troposphere exchange. Rev. Geophys., 33, 403439, https://doi.org/10.1029/95RG02097.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kida, H., 1983: General circulation of air parcels and transport characteristics derived from a hemispheric GCM: Part 2. Very long-term motions of air parcels in the troposphere and stratosphere. J. Meteor. Soc. Japan, 61, 510–523, https://doi.org/10.2151/jmsj1965.61.4_510.

    • Search Google Scholar
    • Export Citation
  • Kolonjari, F., and Coauthors, 2018: Assessing stratospheric transport in the CMAM30 simulations using ACE-FTS measurements. Atmos. Chem. Phys., 18, 68016828, https://doi.org/10.5194/acp-18-6801-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lauritzen, P. H., and Coauthors, 2018: NCAR release of CAM-SE in CESM2.0: A reformulation of the spectral element dynamical core in dry-mass vertical coordinates with comprehensive treatment of condensates and energy. J. Adv. Model. Earth Syst., 10, 15371570, https://doi.org/10.1029/2017MS001257.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., and M. Fox-Rabinovitz, 1989: Consistent vertical and horizontal resolution. Mon. Wea. Rev., 117, 25752583, https://doi.org/10.1175/1520-0493(1989)117<2575:CVAHR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Linz, M., R. A. Plumb, E. P. Gerber, and A. Sheshadri, 2016: The relationship between age of air and the diabatic circulation of the stratosphere. J. Atmos. Sci., 73, 45074518, https://doi.org/10.1175/JAS-D-16-0125.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Linz, M., R. A. Plumb, E. P. Gerber, F. J. Haenel, G. Stiller, D. E. Kinnison, A. Ming, and J. L. Neu, 2017: The strength of the meridional overturning circulation of the stratosphere. Nat. Geosci., 10, 663667, https://doi.org/10.1038/ngeo3013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Linz, M., R. A. Plumb, A. Gupta, and E. P. Gerber, 2021: Stratospheric adiabatic mixing rates derived from the vertical gradient of age of air. J. Geophys. Res. Atmos., https://doi.org/10.1029/2021JD035199, in press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McIntyre, M. E., and T. N. Palmer, 1983: Breaking planetary waves in the stratosphere. Nature, 305, 593600, https://doi.org/10.1038/305593a0.

  • Molina, M. J., and F. S. Rowland, 1974: Stratospheric sink for chlorofluoromethanes: Chlorine atom-catalysed destruction of ozone. Nature, 249, 810812, https://doi.org/10.1038/249810a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakamura, N., 1996: Two-dimensional mixing, edge formation, and permeability diagnosed in an area coordinate. J. Atmos. Sci., 53, 15241537, https://doi.org/10.1175/1520-0469(1996)053<1524:TDMEFA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neu, J. L., and R. A. Plumb, 1999: Age of air in a “leaky pipe” model of stratospheric transport. J. Geophys. Res., 104, 19 24319 255, https://doi.org/10.1029/1999JD900251.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Orbe, C., M. Holzer, L. M. Polvani, and D. Waugh, 2013: Air-mass origin as a diagnostic of tropospheric transport. J. Geophys. Res. Atmos., 118, 14591470, https://doi.org/10.1002/jgrd.50133.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pauluis, O., A. Czaja, and R. Korty, 2009: The global atmospheric circulation in moist isentropic coordinates. J. Climate, 23, 30773093, https://doi.org/10.1175/2009JCLI2789.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Plumb, R. A., 1996: A “tropical pipe” model of stratospheric transport. J. Geophys. Res., 101, 39573972, https://doi.org/10.1029/95JD03002.

  • Plumb, R. A., 2002: Stratospheric transport. J. Meteor. Soc. Japan, 80, 793809, https://doi.org/10.2151/jmsj.80.793.

  • Plumb, R. A., 2007: Tracer interrelationships in the stratosphere. Rev. Geophys., 45, RG4005, https://doi.org/10.1029/2005RG000179.

  • Plumb, R. A., and R. C. Bell, 1982: A model of the quasi-biennial oscillation on an equatorial beta-plane. Quart. J. Roy. Meteor. Soc., 108, 335352, https://doi.org/10.1002/qj.49710845604.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Plumb, R. A., and M. K. W. Ko, 1992: Interrelationships between mixing ratios of long-lived stratospheric constituents. J. Geophys. Res., 97, 10 14510 156, https://doi.org/10.1029/92JD00450.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polvani, L. M., and P. J. Kushner, 2002: Tropospheric response to stratospheric perturbations in a relatively simple general circulation model. Geophys. Res. Lett., 29, 1114, https://doi.org/10.1029/2001GL014284.

    • Crossref
    • Export Citation
  • Punge, H. J., P. Konopka, M. A. Giorgetta, and R. Müller, 2009: Effects of the quasi-biennial oscillation on low-latitude transport in the stratosphere derived from trajectory calculations. J. Geophys. Res., 114, D03102, https://doi.org/10.1029/2008JD010518.

    • Search Google Scholar
    • Export Citation
  • Ray, E. A., and Coauthors, 2010: Evidence for changes in stratospheric transport and mixing over the past three decades based on multiple data sets and tropical leaky pipe analysis. J. Geophys. Res., 115, D21304, https://doi.org/10.1029/2010JD014206.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ray, E. A., F. L. Moore, K. H. Rosenlof, D. A. Plummer, F. Kolonjari, and K. A. Walker, 2016: An idealized stratospheric model useful for understanding differences between long-lived trace gas measurements and global chemistry-climate model output. J. Geophys. Res. Atmos., 121, 53565367, https://doi.org/10.1002/2015JD024447.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sparling, L. C., J. A. Kettleborough, P. H. Haynes, M. E. McIntyre, J. E. Rosenfield, M. R. Schoeberl, and P. A. Newman, 1997: Diabatic cross-isentropic dispersion in the lower stratosphere. J. Geophys. Res., 102, 25 81725 829, https://doi.org/10.1029/97JD01968.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Townsend, R. D., and D. R. Johnson, 1985: A diagnostic study of the isentropic zonally averaged mass circulation during the first GARP global experiment. J. Atmos. Sci., 42, 15651579, https://doi.org/10.1175/1520-0469(1985)042<1565:ADSOTI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waugh, D., and T. Hall, 2002: Age of stratospheric air: Theory, observations, and models. Rev. Geophys., 40, 1010, https://doi.org/10.1029/2000RG000101.

    • Crossref
    • Export Citation
  • Waugh, D., and Coauthors, 1997: Mixing of polar vortex air into middle latitudes as revealed by tracer-tracer scatterplots. J. Geophys. Res., 102, 13 11913 134, https://doi.org/10.1029/96JD03715.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yamada, R., and O. Pauluis, 2015: Momentum balance and Eliassen–Palm flux on moist isentropic surfaces. J. Atmos. Sci., 73, 12931314, https://doi.org/10.1175/JAS-D-15-0229.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yao, W., and C. Jablonowski, 2015: Idealized quasi-biennial oscillations in an ensemble of dry GCM dynamical cores. J. Atmos. Sci., 72, 22012226, https://doi.org/10.1175/JAS-D-14-0236.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 250 123 0
Full Text Views 139 69 12
PDF Downloads 140 62 3

Numerical Impacts on Tracer Transport: Diagnosing the Influence of Dynamical Core Formulation and Resolution on Stratospheric Transport

Aman GuptaaCenter for Atmosphere-Ocean Science, Courant Institute of Mathematical Sciences, New York, New York
bMeteorological Institute Munich, Ludwig-Maximilian University, Munich, Germany

Search for other papers by Aman Gupta in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-2215-7135
,
Edwin P. GerberaCenter for Atmosphere-Ocean Science, Courant Institute of Mathematical Sciences, New York, New York

Search for other papers by Edwin P. Gerber in
Current site
Google Scholar
PubMed
Close
,
R. Alan PlumbcDepartment of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts

Search for other papers by R. Alan Plumb in
Current site
Google Scholar
PubMed
Close
, and
Peter H. LauritzendNational Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Peter H. Lauritzen in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Accurate representation of stratospheric trace gas transport is important for ozone modeling and climate projection. Intermodel spread can arise from differences in the representation of transport by the diabatic (overturning) circulation versus comparatively faster adiabatic mixing by breaking waves, or through numerical errors, primarily diffusion. This study investigates the impact of these processes on transport using an idealized tracer, the age of air. Transport is assessed in two state-of-the-art dynamical cores based on fundamentally different numerical formulations: finite-volume and spectral element. Integrating the models in free-running and nudged tropical wind configurations reveals the crucial impact of tropical dynamics on stratospheric transport. Using age-budget theory, vertical and horizontal gradients of age allow comparison of the roles of the diabatic circulation, adiabatic mixing, and the numerical diffusive flux. Their respective contribution is quantified by connecting the full 3D model to the tropical leaky pipe framework of Neu and Plumb. Transport by the two cores varies significantly in the free-running integrations, with the age in the middle stratosphere differing by about 2 years primarily due to differences in adiabatic mixing. When winds in the tropics are constrained, the difference in age drops to about 0.5 years; in this configuration, more than half the difference is due to the representation of the diabatic circulation. Numerical diffusion is very sensitive to the resolution of the core, but does not play a significant role in differences between the cores when they are run at comparable resolution. It is concluded that fundamental differences rooted in dynamical core formulation can account for a substantial fraction of transport bias between climate models.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Publisher’s Note: This article was revised on 22 October 2021 to update the Acknowledgments section.

Corresponding author: Aman Gupta, ag4680@nyu.edu

Abstract

Accurate representation of stratospheric trace gas transport is important for ozone modeling and climate projection. Intermodel spread can arise from differences in the representation of transport by the diabatic (overturning) circulation versus comparatively faster adiabatic mixing by breaking waves, or through numerical errors, primarily diffusion. This study investigates the impact of these processes on transport using an idealized tracer, the age of air. Transport is assessed in two state-of-the-art dynamical cores based on fundamentally different numerical formulations: finite-volume and spectral element. Integrating the models in free-running and nudged tropical wind configurations reveals the crucial impact of tropical dynamics on stratospheric transport. Using age-budget theory, vertical and horizontal gradients of age allow comparison of the roles of the diabatic circulation, adiabatic mixing, and the numerical diffusive flux. Their respective contribution is quantified by connecting the full 3D model to the tropical leaky pipe framework of Neu and Plumb. Transport by the two cores varies significantly in the free-running integrations, with the age in the middle stratosphere differing by about 2 years primarily due to differences in adiabatic mixing. When winds in the tropics are constrained, the difference in age drops to about 0.5 years; in this configuration, more than half the difference is due to the representation of the diabatic circulation. Numerical diffusion is very sensitive to the resolution of the core, but does not play a significant role in differences between the cores when they are run at comparable resolution. It is concluded that fundamental differences rooted in dynamical core formulation can account for a substantial fraction of transport bias between climate models.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Publisher’s Note: This article was revised on 22 October 2021 to update the Acknowledgments section.

Corresponding author: Aman Gupta, ag4680@nyu.edu

Supplementary Materials

    • Supplemental Materials (PDF 173.74 KB)
Save