• Bister, M., and K. A. Emanuel, 1998: Dissipative heating and hurricane intensity. Meteor. Atmos. Phys., 65, 233240, https://doi.org/10.1007/BF01030791.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blackadar, A. K., 1962: The vertical distribution of wind and turbulent exchange in a neutral atmosphere. J. Geophys. Res., 67, 30953102, https://doi.org/10.1029/JZ067i008p03095.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., 2012: Effects of surface exchange coefficients and turbulence length scales on the intensity and structure of numerically simulated hurricanes. Mon. Wea. Rev., 140, 11251143, https://doi.org/10.1175/MWR-D-11-00231.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and R. Rotunno, 2009: The maximum intensity of tropical cyclones in axisymmetric numerical simulations. Mon. Wea. Rev., 137, 17701789, https://doi.org/10.1175/2008MWR2709.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carrasco, C., C. Landsea, and Y. Lin, 2014: The influence of tropical cyclone size on its intensification. Wea. Forecasting, 29, 582590, https://doi.org/10.1175/WAF-D-13-00092.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Črnivec, N., R. K. Smith, and G. Kilroy, 2016: Dependence of tropical cyclone intensification rate on sea-surface temperature. Quart. J. Roy. Meteor. Soc., 142, 16181627, https://doi.org/10.1002/qj.2752.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMaria, M., and J. D. Pickle, 1988: A simplified system of equations for simulation of tropical cyclones. J. Atmos. Sci., 45, 15421554, https://doi.org/10.1175/1520-0469(1988)045<1542:ASSOEF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1988: The maximum intensity of hurricanes. J. Atmos. Sci., 45, 11431155, https://doi.org/10.1175/1520-0469(1988)045<1143:TMIOH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fei, R., Y. Wang, and Y. Li, 2021: Contributions of vertical advection to supergradient wind in tropical cyclone boundary layer: A numerical study. J. Atmos. Sci., 78, 10571073, https://doi.org/10.1175/JAS-D-20-0075.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frisius, T., and M. Lee, 2016: The impact of gradient wind imbalance on tropical cyclone intensification within Ooyama’s three-layer model. J. Atmos. Sci., 73, 36593679, https://doi.org/10.1175/JAS-D-15-0336.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frisius, T., D. Schönemann, and J. Vigh, 2013: The impact of gradient wind imbalance on potential intensity of tropical cyclones in an unbalanced slab boundary layer model. J. Atmos. Sci., 70, 18741890, https://doi.org/10.1175/JAS-D-12-0160.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kepert, J. D., 2010a: Slab- and height-resolving models of the tropical cyclone boundary layer. Part I: Comparing the simulations. Quart. J. Roy. Meteor. Soc., 136, 16861699, https://doi.org/10.1002/qj.667.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kepert, J. D., 2010b: Slab- and height-resolving models of the tropical cyclone boundary layer. Part II: Why the simulations differ. Quart. J. Roy. Meteor. Soc., 136, 17001711, https://doi.org/10.1002/qj.685.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kepert, J. D., 2017: Time and space scales in the tropical cyclone boundary layer, and the location of the eyewall updraft. J. Atmos. Sci., 74, 33053323, https://doi.org/10.1175/JAS-D-17-0077.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kepert, J. D., and Y. Wang, 2001: The dynamics of boundary layer jets within the tropical cyclone core. Part II: Nonlinear enhancement. J. Atmos. Sci., 58, 24852501, https://doi.org/10.1175/1520-0469(2001)058<2485:TDOBLJ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, M., and T. Frisius, 2018: On the role of convective available potential energy (CAPE) in tropical cyclone intensification. Tellus, 70A, 118, https://doi.org/10.1080/16000870.2018.1433433.

    • Search Google Scholar
    • Export Citation
  • Li, T.-H., and Y. Wang, 2021a: The role of boundary layer dynamics in tropical cyclone intensification. Part I: Sensitivity to surface drag coefficient. J. Meteor. Soc. Japan, 99, 537554, https://doi.org/10.2151/jmsj.2021-027.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, T.-H., and Y. Wang, 2021b: The role of boundary layer dynamics in tropical cyclone intensification. Part II: Sensitivity to initial vortex structure. J. Meteor. Soc. Japan, 99, 555573, https://doi.org/10.2151/jmsj.2021-028.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y., Y. Wang, and Y. Lin, 2019: Revisiting the dynamics of eyewall contraction of tropical cyclones. J. Atmos. Sci., 76, 32293245, https://doi.org/10.1175/JAS-D-19-0076.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y., Y. Wang, Y. Lin, and R. Fei, 2020: Dependence of superintensity of tropical cyclones on SST in axisymmetric numerical simulations. Mon. Wea. Rev., 148, 47674781, https://doi.org/10.1175/MWR-D-20-0141.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ooyama, K. V., 1969: Numerical simulation of the life cycle of tropical cyclones. J. Atmos. Sci., 26, 340, https://doi.org/10.1175/1520-0469(1969)026<0003:NSOTLC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pendergrass, A. G., and H. E. Willoughby, 2009: Diabatically induced secondary flows in tropical cyclones. Part I: Quasi-steady forcing. Mon. Wea. Rev., 137, 805821, https://doi.org/10.1175/2008MWR2657.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Powell, M. D., G. Soukup, S. Cocke, S. Gulati, N. Morisseau-Leroy, S. Hamid, N. Dorst, and L. Axe, 2005: State of Florida hurricane loss prediction model: Atmospheric science component. J. Wind Eng. Ind. Aerodyn., 93, 651674, https://doi.org/10.1016/j.jweia.2005.05.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Powell, M. D., E. W. Uhlhorn, and J. D. Kepert, 2009: Estimating maximum surface winds from hurricane reconnaissance measurements. Wea. Forecasting, 24, 868883, https://doi.org/10.1175/2008WAF2007087.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qin, N., D.-L. Zhang, and Y. Li, 2016: A statistical analysis of steady eyewall sizes associated with rapidly intensifying hurricanes. Wea. Forecasting, 31, 737742, https://doi.org/10.1175/WAF-D-16-0016.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotunno, R., and G. H. Bryan, 2012: Effects of parameterized diffusion on simulated hurricanes. J. Atmos. Sci., 69, 22842299, https://doi.org/10.1175/JAS-D-11-0204.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schecter, D. A., 2011: Evaluation of a reduced model for investigating hurricane formation from turbulence. Quart. J. Roy. Meteor. Soc., 137, 155178, https://doi.org/10.1002/qj.729.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schecter, D. A., and T. J. Dunkerton, 2009: Hurricane formation in diabatic Ekman turbulence. Quart. J. Roy. Meteor. Soc., 135, 823838, https://doi.org/10.1002/qj.405.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schubert, W. H., and J. J. Hack, 1982: Inertial stability and tropical cyclone development. J. Atmos. Sci., 39, 16871697, https://doi.org/10.1175/1520-0469(1982)039<1687:ISATCD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shapiro, L. J., 1983: The asymmetric boundary layer flow under a translating hurricane. J. Atmos. Sci., 40, 19841998, https://doi.org/10.1175/1520-0469(1983)040<1984:TABLFU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smagorinsky, J., 1963: General circulation experiments with the primitive equations. I: The basic experiment. Mon. Wea. Rev., 91, 99164, https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. K., C. W. Schmidt, and M. T. Montgomery, 2011: An investigation of rotational influences on tropical-cyclone size and intensity. Quart. J. Roy. Meteor. Soc., 137, 18411855, https://doi.org/10.1002/qj.862.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. K., G. Kilroy, and M. K. Montgomery, 2015: Why do model tropical cyclones intensify more rapidly at low latitudes? J. Atmos. Sci., 72, 17831804, https://doi.org/10.1175/JAS-D-14-0044.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stern, D. P., J. L. Vigh, D. S. Nolan, and F. Zhang, 2015: Revisiting the relationship between eyewall contraction and intensification. J. Atmos. Sci., 72, 12831306, https://doi.org/10.1175/JAS-D-14-0261.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tao, D., M. Bell, R. Rotunno, and P. J. Van Leeuwen, 2020: Why do the maximum intensities in modeled tropical cyclones vary under the same environmental conditions? Geophys. Res. Lett., 47, e2019GL085980, https://doi.org/10.1029/2019GL085980.

    • Crossref
    • Export Citation
  • Vickery, P. J., P. F. Skerlj, A. C. Steckley, and L. A. Twisdale, 2000: Hurricane wind field model for use in hurricane simulations. J. Struct. Eng., 126, 12031221, https://doi.org/10.1061/(ASCE)0733-9445(2000)126:10(1203).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vickery, P. J., D. Wadhera, M. D. Powell, and Y. Chen, 2009a: A hurricane boundary layer and wind field model for use in engineering applications. J. Appl. Meteor. Climatol., 48, 381405, https://doi.org/10.1175/2008JAMC1841.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vickery, P. J., F. J. Masters, M. D. Powell, and D. Wadhera, 2009b: Hurricane hazard modeling: The past, present, and future. J. Wind Eng. Ind. Aerodyn., 97, 392405, https://doi.org/10.1016/j.jweia.2009.05.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., 2001: An explicit simulation of tropical cyclones with a triply nested movable mesh primitive equation model: TCM3. Part I: Model description and control experiment. Mon. Wea. Rev., 129, 13701394, https://doi.org/10.1175/1520-0493(2001)129<1370:AESOTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., 2007: A multiply nested, movable mesh, fully compressible, nonhydrostatic tropical cyclone model—TCM4: Model description and development of asymmetries without explicit asymmetric forcing. Meteor. Atmos. Phys., 97, 93116, https://doi.org/10.1007/s00703-006-0246-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, G. J., 2015: The effects of vortex structure and vortex translation on the tropical cyclone boundary layer wind field. J. Adv. Model. Earth Syst., 7, 188214, https://doi.org/10.1002/2013MS000299.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., 1998: Tropical cyclone eye thermodynamics. Mon. Wea. Rev., 126, 30533067, https://doi.org/10.1175/1520-0493(1998)126<3053:TCET>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, Q., and Z. Ruan, 2021: Rapid contraction of the radius of maximum tangential wind and rapid intensification of a tropical cyclone. J. Geophys. Res. Atmos., 126, e2020JD033681, https://doi.org/10.1029/2020JD033681.

    • Crossref
    • Export Citation
  • Xu, J., and Y. Wang, 2015: A statistical analysis on the dependence of tropical cyclone intensification rate on the storm intensity and size in the North Atlantic. Wea. Forecasting, 30, 692701, https://doi.org/10.1175/WAF-D-14-00141.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, J., and Y. Wang, 2018a: Dependence of tropical cyclone intensification rate on sea surface temperature, storm intensity and size in the western North Pacific. Wea. Forecasting, 33, 523537, https://doi.org/10.1175/WAF-D-17-0095.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, J., and Y. Wang, 2018b: Effect of the initial vortex structure on intensification of a numerically simulated tropical cyclone. J. Meteor. Soc. Japan, 96, 111126, https://doi.org/10.2151/jmsj.2018-014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, J., Y. Wang, and Z. M. Tan, 2016: The relationship between sea surface temperature and maximum intensification rate of tropical cyclones in the North Atlantic. J. Atmos. Sci., 73, 49794988, https://doi.org/10.1175/JAS-D-16-0164.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, G., W. Perrie, B. Zhang, J. Yang, and Y. He, 2020: Monitoring of tropical cyclone structures in ten years of RADARSAT-2 SAR images. Remote Sens. Environ., 236, 111449, https://doi.org/10.1016/j.rse.2019.111449.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 259 170 14
Full Text Views 120 85 23
PDF Downloads 133 84 16

Tropical Cyclone Intensification Simulated in the Ooyama-Type Three-Layer Model with a Multilevel Boundary Layer

Rong FeiaState Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, China Meteorological Administration, Beijing, China
bCollege of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
cInternational Pacific Research Center, University of Hawai‘i at Mānoa, Honolulu, Hawaii
dDepartment of Atmospheric Sciences, University of Hawai‘i at Mānoa, Honolulu, Hawaii

Search for other papers by Rong Fei in
Current site
Google Scholar
PubMed
Close
and
Yuqing WangcInternational Pacific Research Center, University of Hawai‘i at Mānoa, Honolulu, Hawaii
dDepartment of Atmospheric Sciences, University of Hawai‘i at Mānoa, Honolulu, Hawaii

Search for other papers by Yuqing Wang in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-1691-8161
Restricted access

Abstract

The first successful simulation of tropical cyclone (TC) intensification was achieved with a three-layer model, often named the Ooyama-type three-layer model, which consists of a slab boundary layer and two shallow water layers above. Later studies showed that the use of a slab boundary layer would produce unrealistic boundary layer wind structure and a too-strong eyewall updraft at the top of TC boundary layer and thus simulate unrealistically rapid intensification compared to the use of a height-parameterized boundary layer. To fully consider the highly height-dependent boundary layer dynamics in the Ooyama-type three-layer model, this study replaced the slab boundary layer with a multilevel boundary layer in the Ooyama-type model and used it to conduct simulations of TC intensification and also compared the simulation with that from the model version with a slab boundary layer. Results show that compared with the simulation with a slab boundary layer, the use of a multilevel boundary layer can greatly improve simulations of the boundary layer wind structure and the strength and radial location of eyewall updraft, and thus more realistic intensification rate due to better treatments of the surface layer processes and the nonlinear advection terms in the boundary layer. Sensitivity of the simulated TCs to the model configuration and to both horizontal and vertical mixing lengths, sea surface temperature, the Coriolis parameter, and the initial TC vortex structure are also examined. The results demonstrate that this new model can reproduce various sensitivities comparable to those found in previous studies using full-physics models.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yuqing Wang, yuqing@hawaii.edu

Abstract

The first successful simulation of tropical cyclone (TC) intensification was achieved with a three-layer model, often named the Ooyama-type three-layer model, which consists of a slab boundary layer and two shallow water layers above. Later studies showed that the use of a slab boundary layer would produce unrealistic boundary layer wind structure and a too-strong eyewall updraft at the top of TC boundary layer and thus simulate unrealistically rapid intensification compared to the use of a height-parameterized boundary layer. To fully consider the highly height-dependent boundary layer dynamics in the Ooyama-type three-layer model, this study replaced the slab boundary layer with a multilevel boundary layer in the Ooyama-type model and used it to conduct simulations of TC intensification and also compared the simulation with that from the model version with a slab boundary layer. Results show that compared with the simulation with a slab boundary layer, the use of a multilevel boundary layer can greatly improve simulations of the boundary layer wind structure and the strength and radial location of eyewall updraft, and thus more realistic intensification rate due to better treatments of the surface layer processes and the nonlinear advection terms in the boundary layer. Sensitivity of the simulated TCs to the model configuration and to both horizontal and vertical mixing lengths, sea surface temperature, the Coriolis parameter, and the initial TC vortex structure are also examined. The results demonstrate that this new model can reproduce various sensitivities comparable to those found in previous studies using full-physics models.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yuqing Wang, yuqing@hawaii.edu
Save