• Bryan, G. H., and J. M. Fritsch, 2002: A benchmark simulation for moist nonhydrostatic numerical model. Mon. Wea. Rev., 130, 29172928, https://doi.org/10.1175/1520-0493(2002)130<2917:ABSFMN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, H., D. Zhang, J. Carton, and R. Atlas, 2011: On the rapid intensification of Hurricane Wilma (2005). Part I: Model prediction and structural changes. Wea. Forecasting, 26, 885901, https://doi.org/10.1175/WAF-D-11-00001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Corbosiero, K. L., J. Molinari, and M. L. Black, 2005: The structure and evolution of Hurricane Elena (1985). Part I: Symmetric intensification. Mon. Wea. Rev., 133, 29052921, https://doi.org/10.1175/MWR3010.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Črnivec, N., R. K. Smith, and G. Kilroy, 2016: Dependence of tropical cyclone intensification rate on sea-surface temperature. Quart. J. Roy. Meteor. Soc., 142, 16181627, https://doi.org/10.1002/qj.2752.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., B. K. Haus, N. Reul, W. J. Plant, M. Stiassnie, H. C. Graber, O. B. Brown, and E. S. Saltzman, 2004: On the limiting aerodynamic roughness of the ocean in very strong winds. Geophys. Res. Lett., 31, L18306, https://doi.org/10.1029/2004GL019460.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 2012: Self-stratification of tropical cyclone outflow. Part II: Implications for storm intensification. J. Atmos. Sci., 69, 988996, https://doi.org/10.1175/JAS-D-11-0177.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heng, J., and Y. Wang, 2016: Nonlinear response of a tropical cyclone vortex to prescribed eyewall heating with and without surface friction in TCM4: Implications for tropical cyclone intensification. J. Atmos. Sci., 73, 13151333, https://doi.org/10.1175/JAS-D-15-0164.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holland, G. J., and R. T. Merrill, 1984: On the dynamics of tropical cyclone structural changes. Quart. J. Roy. Meteor. Soc., 110, 723745, https://doi.org/10.1002/qj.49711046510.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Judt, F., and S. S. Chen, 2013: Reply to “Comments on ‘Convectively generated potential vorticity in rainbands and formation of the secondary eyewall in Hurricane Rita of 2005.’” J. Atmos. Sci., 70, 989992, https://doi.org/10.1175/JAS-D-12-0151.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaplan, J., and M. DeMaria, 2003: Large-scale characteristics of rapidly intensifying tropical cyclones in the North Atlantic basin. Wea. Forecasting, 18, 10931108, https://doi.org/10.1175/1520-0434(2003)018<1093:LCORIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kepert, J. D., 2017: Time and space scales in the tropical cyclone boundary layer, and the location of the eyewall updraft. J. Atmos. Sci., 74, 33053323, https://doi.org/10.1175/JAS-D-17-0077.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kilroy, G., R. K. Smith, and M. T. Montgomery, 2016: Why do model tropical cyclones grow progressively in size and decay in intensity after reaching maturity? J. Atmos. Sci., 73, 487503, https://doi.org/10.1175/JAS-D-15-0157.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, T.-H., and Y. Wang, 2021: The role of boundary layer dynamics in tropical cyclone intensification. Part II: Sensitivity to initial vortex structure. J. Meteor. Soc. Japan, 99, 555573, https://doi.org/10.2151/jmsj.2021-028.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y., Y. Wang, and Y. Lin, 2019: Revisiting the dynamics of eyewall contraction of tropical cyclones. J. Atmos. Sci., 76, 32293245, https://doi.org/10.1175/JAS-D-19-0076.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y., Y. Wang, and Y. Lin, 2020a: How much does the upward advection of the supergradient component of boundary layer wind contribute to tropical cyclone intensification and maximum intensity? J. Atmos. Sci., 77, 26492664, https://doi.org/10.1175/JAS-D-19-0350.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y., Y. Wang, Y. Lin, and R. Fei, 2020b: Dependence of superintensity of tropical cyclones on SST in axisymmetric numerical simulations. Mon. Wea. Rev., 148, 47674781, https://doi.org/10.1175/MWR-D-20-0141.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peng, K., R. Rotunno, and G. H. Bryan, 2018: Evaluation of a time-dependent model for the intensification of tropical cyclones. J. Atmos. Sci., 75, 21252138, https://doi.org/10.1175/JAS-D-17-0382.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pu, Z., X. Li, and E. J. Zipser, 2009: Diagnosis of the initial and forecast errors in the numerical simulation of the rapid intensification of Hurricane Emily (2005). Wea. Forecasting, 24, 12361251, https://doi.org/10.1175/2009WAF2222195.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qin, N., D.-L. Zhang, and Y. Li, 2016: A statistical analysis of steady eyewall sizes associated with rapidly intensifying hurricanes. Wea. Forecasting, 31, 737742, https://doi.org/10.1175/WAF-D-16-0016.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotunno, R., and K. A. Emanuel, 1987: An air–sea interaction theory for tropical cyclones. Part II: Evolutionary study using a nonhydrostatic axisymmetric numerical model. J. Atmos. Sci., 44, 542561, https://doi.org/10.1175/1520-0469(1987)044<0542:AAITFT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schubert, W. H., and J. J. Hack, 1982: Inertial stability and tropical cyclone development. J. Atmos. Sci., 39, 16871697, https://doi.org/10.1175/1520-0469(1982)039<1687:ISATCD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shapiro, L. J., and H. E. Willoughby, 1982: The response of balanced hurricanes to local sources of heat and momentum. J. Atmos. Sci., 39, 378394, https://doi.org/10.1175/1520-0469(1982)039<0378:TROBHT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shimada, U., and T. Horinouchi, 2018: Reintensification and eyewall formation in strong shear: A case study of Typhoon Noul (2015). Mon. Wea. Rev., 146, 27992817, https://doi.org/10.1175/MWR-D-18-0035.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stern, D. P., J. R. Brisbois, and D. S. Nolan, 2014: An expanded dataset of hurricane eyewall sizes and slopes. J. Atmos. Sci., 71, 27472762, https://doi.org/10.1175/JAS-D-13-0302.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stern, D. P., J. L. Vigh, D. S. Nolan, and F. Zhang, 2015: Revisiting the relationship between eyewall contraction and intensification. J. Atmos. Sci., 72, 12831306, https://doi.org/10.1175/JAS-D-14-0261.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115, https://doi.org/10.1175/2008MWR2387.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., Y. Li, J. Xu, Z.-M. Tan, and Y. Lin, 2021: The intensity dependence of tropical cyclone intensification rate in a simplified energetically based dynamical system model. J. Atmos. Sci., 78, 20332045, https://doi.org/10.1175/JAS-D-20-0393.1.

    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., 1990: Temporal changes of the primary circulation in tropical cyclones. J. Atmos. Sci., 47, 242264, https://doi.org/10.1175/1520-0469(1990)047<0242:TCOTPC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., J. A. Clos, and M. G. Shoreibah, 1982: Concentric eye walls, secondary wind maxima, and the evolution of the hurricane vortex. J. Atmos. Sci., 39, 395411, https://doi.org/10.1175/1520-0469(1982)039<0395:CEWSWM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, V. T., and L. W. White, 2011: A new parametric model of vortex tangential-wind profiles: Development, testing, and verification. J. Atmos. Sci., 68, 9901006, https://doi.org/10.1175/2011JAS3588.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, Q., and Z. Ruan, 2021: Rapid contraction of the radius of maximum tangential wind and rapid intensification of a tropical cyclone. J. Geophys. Res. Atmos., 126, e2020JD033681, https://doi.org/10.1029/2020JD033681.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, D., Y. Liu, and M. K. Yau, 2001: A multiscale numerical study of Hurricane Andrew (1992). Part IV: Unbalanced flows. Mon. Wea. Rev., 129, 92107, https://doi.org/10.1175/1520-0493(2001)129<0092:AMNSOH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 745 481 0
Full Text Views 340 213 67
PDF Downloads 360 200 25

Why Does Rapid Contraction of the Radius of Maximum Wind Precede Rapid Intensification in Tropical Cyclones?

Yuanlong LiaMinistry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing, China
bSchool of Atmospheric Sciences, Nanjing University, Nanjing, China

Search for other papers by Yuanlong Li in
Current site
Google Scholar
PubMed
Close
,
Yuqing WangcInternational Pacific Research Center, School of Ocean and Earth Science and Technology, University of Hawai‘i at Mānoa, Honolulu, Hawaii
dDepartment of Atmospheric Sciences, School of Ocean and Earth Science and Technology, University of Hawai‘i at Mānoa, Honolulu, Hawaii
eState Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, China Meteorological Administration, Beijing, China

Search for other papers by Yuqing Wang in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-1691-8161
,
Yanluan LinaMinistry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing, China

Search for other papers by Yanluan Lin in
Current site
Google Scholar
PubMed
Close
, and
Xin WangfNational Satellite Meteorological Center, China Meteorological Administration, Beijing, China

Search for other papers by Xin Wang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The radius of maximum wind (RMW) has been found to contract rapidly well preceding rapid intensification in tropical cyclones (TCs) in recent literature, but the understanding of the involved dynamics is incomplete. In this study, this phenomenon is revisited based on ensemble axisymmetric numerical simulations. Consistent with previous studies, because the absolute angular momentum (AAM) is not conserved following the RMW, the phenomenon cannot be understood based on the AAM-based dynamics. Both budgets of tangential wind and the rate of change in the RMW are shown to provide dynamical insights into the simulated relationship between the rapid intensification and rapid RMW contraction. During the rapid RMW contraction stage, due to the weak TC intensity and large RMW, the moderate negative radial gradient of radial vorticity flux and small curvature of the radial distribution of tangential wind near the RMW favor rapid RMW contraction but weak diabatic heating far inside the RMW leads to weak low-level inflow and small radial absolute vorticity flux near the RMW and thus a relatively small intensification rate. As RMW contraction continues and TC intensity increases, diabatic heating inside the RMW and radial inflow near the RMW increase, leading to a substantial increase in radial absolute vorticity flux near the RMW and thus the rapid TC intensification. However, the RMW contraction rate decreases rapidly due to the rapid increase in the curvature of the radial distribution of tangential wind near the RMW as the TC intensifies rapidly and RMW decreases.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yuqing Wang, yuqing@hawaii.edu

Abstract

The radius of maximum wind (RMW) has been found to contract rapidly well preceding rapid intensification in tropical cyclones (TCs) in recent literature, but the understanding of the involved dynamics is incomplete. In this study, this phenomenon is revisited based on ensemble axisymmetric numerical simulations. Consistent with previous studies, because the absolute angular momentum (AAM) is not conserved following the RMW, the phenomenon cannot be understood based on the AAM-based dynamics. Both budgets of tangential wind and the rate of change in the RMW are shown to provide dynamical insights into the simulated relationship between the rapid intensification and rapid RMW contraction. During the rapid RMW contraction stage, due to the weak TC intensity and large RMW, the moderate negative radial gradient of radial vorticity flux and small curvature of the radial distribution of tangential wind near the RMW favor rapid RMW contraction but weak diabatic heating far inside the RMW leads to weak low-level inflow and small radial absolute vorticity flux near the RMW and thus a relatively small intensification rate. As RMW contraction continues and TC intensity increases, diabatic heating inside the RMW and radial inflow near the RMW increase, leading to a substantial increase in radial absolute vorticity flux near the RMW and thus the rapid TC intensification. However, the RMW contraction rate decreases rapidly due to the rapid increase in the curvature of the radial distribution of tangential wind near the RMW as the TC intensifies rapidly and RMW decreases.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yuqing Wang, yuqing@hawaii.edu
Save