Evolution of the Moat Associated with the Secondary Eyewall Formation in a Simulated Tropical Cyclone

Nannan Qin aDepartment of Atmospheric and Oceanic Sciences, Fudan University, Shanghai, China
bInstitute of Atmospheric Sciences, Fudan University, Shanghai, China
cState Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing, China

Search for other papers by Nannan Qin in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-7036-879X
,
Liguang Wu aDepartment of Atmospheric and Oceanic Sciences, Fudan University, Shanghai, China
bInstitute of Atmospheric Sciences, Fudan University, Shanghai, China
dInnovation Center of Ocean and Atmosphere System, Zhuhai Fudan Innovation Research Institute, Zhuhai, China

Search for other papers by Liguang Wu in
Current site
Google Scholar
PubMed
Close
, and
Qingyuan Liu eNanjing Joint Institute for Atmospheric Sciences, Nanjing, China
fKey Laboratory of Transportation Meteorology, CMA, Nanjing, China

Search for other papers by Qingyuan Liu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Previous studies have focused on the formation and maintenance of spiral rainbands in the secondary eyewall formation (SEF) of tropical cyclones (TCs). However, the evolution of the moat, a region with weak precipitation separating spiral rainbands from the inner eyewall, is also essential for the SEF. In this study, a semi-idealized numerical experiment is conducted to understand the SEF by focusing on the evolution of the moat. In the simulated TC, a secondary eyewall forms around 32 h, and then intensifies and replaces the inner eyewall at 46 h. It is found that the occurrence and subsequent evolution of the moat in the simulated TC are closely associated with the inner-eyewall structure. As the eyewall updraft becomes strong and the eyewall anvil is well developed, the upper-level inflow develops below the eyewall anvil in response to the diabatic warming in the eyewall anvil. The warming-induced inflow causes a drying effect and promotes the sublimation cooling below the anvil, inducing strong subsidence between the inner eyewall and the spiral rainband through the resulting negative buoyancy. Moreover, the resulting subsidence is enhanced by the compensated downward motion in the outer edge of the inner eyewall. Further analysis indicates that the rapidly decreasing vertical shear of environmental wind and the rapid filamentation zone outside the inner eyewall also play important role in the axisymmetrization of the rainband and the moat subsidence. Our results demonstrate that an intense inner eyewall with a wide upper-level anvil is favorable for the SEF in an environment with decreasing vertical wind shear.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Liguang Wu, liguangwu@fudan.edu.cn

Abstract

Previous studies have focused on the formation and maintenance of spiral rainbands in the secondary eyewall formation (SEF) of tropical cyclones (TCs). However, the evolution of the moat, a region with weak precipitation separating spiral rainbands from the inner eyewall, is also essential for the SEF. In this study, a semi-idealized numerical experiment is conducted to understand the SEF by focusing on the evolution of the moat. In the simulated TC, a secondary eyewall forms around 32 h, and then intensifies and replaces the inner eyewall at 46 h. It is found that the occurrence and subsequent evolution of the moat in the simulated TC are closely associated with the inner-eyewall structure. As the eyewall updraft becomes strong and the eyewall anvil is well developed, the upper-level inflow develops below the eyewall anvil in response to the diabatic warming in the eyewall anvil. The warming-induced inflow causes a drying effect and promotes the sublimation cooling below the anvil, inducing strong subsidence between the inner eyewall and the spiral rainband through the resulting negative buoyancy. Moreover, the resulting subsidence is enhanced by the compensated downward motion in the outer edge of the inner eyewall. Further analysis indicates that the rapidly decreasing vertical shear of environmental wind and the rapid filamentation zone outside the inner eyewall also play important role in the axisymmetrization of the rainband and the moat subsidence. Our results demonstrate that an intense inner eyewall with a wide upper-level anvil is favorable for the SEF in an environment with decreasing vertical wind shear.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Liguang Wu, liguangwu@fudan.edu.cn
Save
  • Adams, J. C., 1989: MUDPACK: Multigrid portable FORTRAN software for the efficient solution of linear elliptic partial differential equations. Appl. Math. Comput., 34, 113146, https://doi.org/10.1016/0096-3003(89)90010-6.

    • Search Google Scholar
    • Export Citation
  • Bell, M. M., M. T. Montgomery, and W. C. Lee, 2012: An axisymmetic view of concentric eyewall evolution in Hurricane Rita (2005). J. Atmos. Sci., 69, 24142432, https://doi.org/10.1175/JAS-D-11-0167.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Braun, S. A., 2002: A cloud-resolving simulation of Hurricane Bob (1991): Storm structure and eyewall buoyancy. Mon. Wea. Rev., 130, 15731592, https://doi.org/10.1175/1520-0493(2002)130<1573:ACRSOH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bui, H. H., R. K. Smith, M. T. Montgomery, and J. Peng, 2009: Balanced and unbalanced aspects of tropical cyclone intensification. Quart. J. Roy. Meteor. Soc., 135, 17151731, https://doi.org/10.1002/qj.502.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, X., and L. Wu, 2016: Topographic influence on the motion of tropical cyclones landfalling on the coast of China. Wea. Forecasting, 31, 16151623, https://doi.org/10.1175/WAF-D-16-0053.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Didlake, A. C., P. D. Reasor, R. F. Rogers, and W. C. Lee, 2018: Dynamics of the transition from spiral rainbands to a secondary eyewall in Hurricane Earl (2010). J. Atmos. Sci., 75, 29092929, https://doi.org/10.1175/JAS-D-17-0348.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duchon, C. E., 1979: Lanczos filtering in one and two dimensions. J. Appl. Meteor., 18, 10161022, https://doi.org/10.1175/1520-0450(1979)018<1016:LFIOAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two dimensional model. J. Atmos. Sci., 46, 30773107, https://doi.org/10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fortner, L. E., 1958: Typhoon Sarah, 1956. Bull. Amer. Meteor. Soc., 39, 633639, https://doi.org/10.1175/1520-0477-39.12.633.

  • Fudeyasu, H., and Y. Wang, 2011: Balanced contribution to the intensification of a tropical cyclone simulated in TCM4: Outer-core spinup process. J. Atmos. Sci., 68, 430449, https://doi.org/10.1175/2010JAS3523.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fudeyasu, H., Y. Wang, M. Satoh, T. Nasuno, H. Miura, and W. Yanase, 2010: Multiscale interactions in the life cycle of a tropical cyclone simulated in a global cloud-system-resolving model. Part I: Large-scale and storm-scale evolutions. Mon. Wea. Rev., 138, 42854304, https://doi.org/10.1175/2010MWR3474.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hawkins, J., and M. Helveston, 2004: Tropical cyclone multiple eyewall characteristics. 26th Conf. on Hurricane and Tropical Meteorology. Miami, FL, Amer. Meteor. Soc., P1.7, https://ams.confex.com/ams/26HURR/techprogram/paper_76084.htm.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A. Jr., 1993: Cloud Dynamics., Academic Press, 573.

  • Huang, Y. H., M. T. Montgomery, and C. C. Wu, 2012: Concentric eyewall formation in Typhoon Sinlaku (2008). Part II: Axisymmetric dynamical processes. J. Atmos. Sci., 69, 662674, https://doi.org/10.1175/JAS-D-11-0114.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and J. M. Fritsch, 1993: Convective parameterization for mesoscale models: The Kain–Fritch scheme. The Representation of Cumulus Convection in Numerical Models, Meteor. Monogr., No. 46, Amer. Meteor. Soc, 165170.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., and M. Sitkowski, 2009: An objective model for identifying secondary eyewall formation in hurricanes. Mon. Wea. Rev., 137, 876892, https://doi.org/10.1175/2008MWR2701.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuo, H.-C., L.-Y. Lin, C.-P. Chang, and R. T. Williams, 2004: The formation of concentric vorticity structures in typhoons. J. Atmos. Sci., 61, 27222734, https://doi.org/10.1175/JAS3286.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuo, H.-C., W. H. Schubert, C.-L. Tsai, and Y.-F. Kuo, 2008: Vortex interactions and the barotropic aspects of concentric eyewall formation. Mon. Wea. Rev., 136, 51835198, https://doi.org/10.1175/2008MWR2378.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, W., H. Chen, and D.-L. Zhang, 2015: On the rapid intensification of Hurricane Wilma (2005). Part III: Effects of latent heat of fusion. J. Atmos. Sci., 72, 38293849, https://doi.org/10.1175/JAS-D-14-0386.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, https://doi.org/10.1029/97JD00237.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Noh, Y., W. G. Cheon, S.-Y. Hong, and S. Raasch, 2003: Improvement of the K-profile model for the planetary boundary layer based on large-eddy simulation data. Bound.-Layer Meteor., 107, 401427, https://doi.org/10.1023/A:1022146015946.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qin, N., and D.-L. Zhang, 2018: On the extraordinary intensification of Hurricane Patricia (2015). Part I: Numerical experiments. Wea. Forecasting, 33, 12051224, https://doi.org/10.1175/WAF-D-18-0045.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qin, N., D.-L. Zhang, and Y. Li, 2016: A statistical analysis of steady eyewall sizes associated with rapidly intensifying hurricanes. Wea. Forecasting, 31, 737742, https://doi.org/10.1175/WAF-D-16-0016.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qin, N., D.-L. Zhang, W. Miller, and C. Q. Kieu, 2018: On the rapid intensification of Hurricane Wilma (2005). Part IV: Inner-core dynamics during the steady radius of maximum wind stage. Quart. J. Roy. Meteor. Soc., 144, 25082523, https://doi.org/10.1002/qj.3339.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., M. T. Montgomery, and L. D. Grasso, 2004: A new look at the problem of tropical cyclones in vertical shear flow: Vortex resiliency. J. Atmos. Sci., 61, 322, https://doi.org/10.1175/1520-0469(2004)061<0003:ANLATP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rozoff, C. M., W. H. Schubert, B. D. McNoldy, and J. P. Kossin, 2006: Rapid filamentation zones in intense tropical cyclones. J. Atmos. Sci., 63, 325340, https://doi.org/10.1175/JAS3595.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rozoff, C. M., D. S. Nolan, J. P. Kossin, F. Zhang, and J. Fang, 2012: The roles of an expanding wind field and inertial stability in tropical cyclone secondary eyewall formation. J. Atmos. Sci., 69, 26212643, https://doi.org/10.1175/JAS-D-11-0326.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Samsury, C. E., and E. J. Zipser, 1995: Secondary wind maxima in hurricanes: Airflow and relationship to rainbands. Mon. Wea. Rev., 123, 35023517, https://doi.org/10.1175/1520-0493(1995)123<3502:SWMIHA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shapiro, L. J., and H. E. Willoughby, 1982: The response of balanced hurricanes to local sources of heat and momentum. J. Atmos. Sci., 39, 378394, https://doi.org/10.1175/1520-0469(1982)039<0378:TROBHT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. K., M. T. Montgomery, and H. Zhu, 2005: Buoyancy in tropical cyclones and other rapidly rotating atmospheric vortices. Dyn. Atmos. Oceans, 40, 189208, https://doi.org/10.1016/j.dynatmoce.2005.03.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Terwey, W. D., and M. T. Montgomery, 2008: Secondary eyewall formation in two idealized, full-physics modeled hurricanes. J. Geophys. Res., 113, D12112, https://doi.org/10.1029/2007JD008897.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tyner, B., P. Zhu, J. A. Zhang, S. Gopalakrishnan, F. Marks, and V. Tallapragada, 2018: A top-down pathway to secondary eyewall formation in simulated tropical cyclones. J. Geophys. Res. Atmos., 123, 174197, https://doi.org/10.1002/2017JD027410.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, H., and Y. Wang, 2014: A numerical study of Typhoon Megi (2010). Part I: Rapid intensification. Mon. Wea. Rev., 142, 2948, https://doi.org/10.1175/MWR-D-13-00070.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, H., Y. Wang, J. Xu, and Y. Duan, 2019: The axisymmetric and asymmetric aspects of the secondary eyewall formation in numerically simulated tropical cyclone under idealized conditions on an f plane. J. Atmos. Sci., 76, 357378, https://doi.org/10.1175/JAS-D-18-0130.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., 2007: A multiply nested, movable mesh, fully compressible, nonhydrostatic tropical cyclone model-TCM4: Model description and development of asymmetries without explicit asymmetric forcing. Meteor. Atmos. Phys., 97, 93116, https://doi.org/10.1007/s00703-006-0246-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., 2008: Rapid filamentation zone in a numerically simulated tropical cyclone. J. Atmos. Sci., 65, 11581181, https://doi.org/10.1175/2007JAS2426.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., 2009: How do outer spiral rainbands affect tropical cyclone structure and intensity?. J. Atmos. Sci., 66, 12501273, https://doi.org/10.1175/2008JAS2737.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., J. A. Clos, and M. G. Shoreibah, 1982: Concentric eyewalls, secondary wind maxima, and the evolution of the hurricane vortex. J. Atmos. Sci., 39, 395411, https://doi.org/10.1175/1520-0469(1982)039<0395:CEWSWM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, L., and X. Chen, 2016: Revisiting the steering principal of tropical cyclone motion. Atmos. Chem. Phys., 16, 14 92514 936, https://doi.org/10.5194/acp-16-14925-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, L., S. A. Braun, J. Halverson, and G. Heymsfield, 2006: A numerical study of Hurricane Erin (2001). Part I: Model verification and storm evolution. J. Atmos. Sci., 63, 6586, https://doi.org/10.1175/JAS3597.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wunsch, K. E. D., and A. C. Didlake, 2018: Analyzing tropical cyclone structures during secondary eyewall formation using aircraft in situ observations. Mon. Wea. Rev., 146, 39773993, https://doi.org/10.1175/MWR-D-18-0197.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, C.-L., A. C. Didlake Jr. , F. Zhang, and R. G. Nystrom, 2020: Asymmetric rainband processes leading to secondary eyewall formation in a model simulation of Hurricane Matthew (2016). J. Atmos. Sci., 78, 2949, https://doi.org/10.1175/JAS-D-20-0061.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, D.-L., Y. Liu, and M. K. Yau, 2000: A multiscale numerical study of Hurricane Andrew (1992). Part III: Dynamically induced vertical motion. Mon. Wea. Rev., 128, 37723788, https://doi.org/10.1175/1520-0493(2001)129<3772:AMNSOH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, P., and Coauthors, 2015: Impact of subgrid-scale processes on eyewall replacement cycle of tropical cyclones in HWRF system. Geophys. Res. Lett., 42, 10 02710 036, https://doi.org/10.1002/2015GL066436.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, T., D.-L. Zhang, and F. Weng, 2004: Numerical simulation of Hurricane Bonnie (1998). Part I: Eyewall evolution and intensity changes. Mon. Wea. Rev., 132, 225241, https://doi.org/10.1175/1520-0493(2004)132<0225:NSOHBP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, Z., and P. Zhu, 2014: The role of outer rainband convection in governing the eyewall replacement cycle in numerical simulations of tropical cyclones. J. Geophys. Res. Atmos., 119, 80498072, https://doi.org/10.1002/2014JD021899.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, Z., and P. Zhu, 2015: Sensitivities of eyewall replacement cycle to model physics, vortex structure, and background winds in numerical simulations of tropical cyclones. J. Geophys. Res. Atmos., 120, 590622, https://doi.org/10.1002/2014JD022056.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 778 0 0
Full Text Views 706 321 28
PDF Downloads 607 216 12