Top-of-Atmosphere Albedo Bias from Neglecting Three-Dimensional Cloud Radiative Effects

Clare E. Singer aDepartment of Environmental Science and Engineering, California Institute of Technology, Pasadena, California

Search for other papers by Clare E. Singer in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-1708-0997
,
Ignacio Lopez-Gomez aDepartment of Environmental Science and Engineering, California Institute of Technology, Pasadena, California

Search for other papers by Ignacio Lopez-Gomez in
Current site
Google Scholar
PubMed
Close
,
Xiyue Zhang aDepartment of Environmental Science and Engineering, California Institute of Technology, Pasadena, California

Search for other papers by Xiyue Zhang in
Current site
Google Scholar
PubMed
Close
, and
Tapio Schneider aDepartment of Environmental Science and Engineering, California Institute of Technology, Pasadena, California
bJet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by Tapio Schneider in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Clouds cover on average nearly 70% of Earth’s surface and regulate the global albedo. The magnitude of the shortwave reflection by clouds depends on their location, optical properties, and three-dimensional (3D) structure. Due to computational limitations, Earth system models are unable to perform 3D radiative transfer calculations. Instead they make assumptions, including the independent column approximation (ICA), that neglect effects of 3D cloud morphology on albedo. We show how the resulting radiative flux bias (ICA-3D) depends on cloud morphology and solar zenith angle. We use high-resolution (20–100-m horizontal resolution) large-eddy simulations to produce realistic 3D cloud fields covering three dominant regimes of low-latitude clouds: shallow cumulus, marine stratocumulus, and deep convective cumulonimbus. A Monte Carlo code is used to run 3D and ICA broadband radiative transfer calculations; we calculate the top-of-atmosphere (TOA) reflected flux and surface irradiance biases as functions of solar zenith angle for these three cloud regimes. Finally, we use satellite observations of cloud water path (CWP) climatology, and the robust correlation between CWP and TOA flux bias in our LES sample, to roughly estimate the impact of neglecting 3D cloud radiative effects on a global scale. We find that the flux bias is largest at small zenith angles and for deeper clouds, while the albedo bias is most prominent for large zenith angles. In the tropics, the annual-mean shortwave radiative flux bias is estimated to be 3.1 ± 1.6 W m−2, reaching as much as 6.5 W m−2 locally.

Significance Statement

Clouds cool Earth by reflecting sunlight back to space. The amount of reflection is determined by their location, details of their 3D structure, and the droplets or ice crystals they are composed of. Global models cannot simulate the 3D structure of clouds because computational power is limited, so they approximate that clouds only scatter sunlight in a 1D vertical column. In this study, we use local models to directly simulate how clouds scatter sunlight in 3D and compare with a 1D approximation. We find the largest bias for overhead sun and for deeper clouds. Using satellite observations of bulk cloud properties, we estimate the tropical annual-mean bias introduced by the 1D approximation to be 3.1 ± 1.6 W m−2.

Zhang’s current affiliation: Department of Earth and Planetary Sciences, The Johns Hopkins University, Baltimore, Maryland.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Clare E. Singer, csinger@caltech.edu

Abstract

Clouds cover on average nearly 70% of Earth’s surface and regulate the global albedo. The magnitude of the shortwave reflection by clouds depends on their location, optical properties, and three-dimensional (3D) structure. Due to computational limitations, Earth system models are unable to perform 3D radiative transfer calculations. Instead they make assumptions, including the independent column approximation (ICA), that neglect effects of 3D cloud morphology on albedo. We show how the resulting radiative flux bias (ICA-3D) depends on cloud morphology and solar zenith angle. We use high-resolution (20–100-m horizontal resolution) large-eddy simulations to produce realistic 3D cloud fields covering three dominant regimes of low-latitude clouds: shallow cumulus, marine stratocumulus, and deep convective cumulonimbus. A Monte Carlo code is used to run 3D and ICA broadband radiative transfer calculations; we calculate the top-of-atmosphere (TOA) reflected flux and surface irradiance biases as functions of solar zenith angle for these three cloud regimes. Finally, we use satellite observations of cloud water path (CWP) climatology, and the robust correlation between CWP and TOA flux bias in our LES sample, to roughly estimate the impact of neglecting 3D cloud radiative effects on a global scale. We find that the flux bias is largest at small zenith angles and for deeper clouds, while the albedo bias is most prominent for large zenith angles. In the tropics, the annual-mean shortwave radiative flux bias is estimated to be 3.1 ± 1.6 W m−2, reaching as much as 6.5 W m−2 locally.

Significance Statement

Clouds cool Earth by reflecting sunlight back to space. The amount of reflection is determined by their location, details of their 3D structure, and the droplets or ice crystals they are composed of. Global models cannot simulate the 3D structure of clouds because computational power is limited, so they approximate that clouds only scatter sunlight in a 1D vertical column. In this study, we use local models to directly simulate how clouds scatter sunlight in 3D and compare with a 1D approximation. We find the largest bias for overhead sun and for deeper clouds. Using satellite observations of bulk cloud properties, we estimate the tropical annual-mean bias introduced by the 1D approximation to be 3.1 ± 1.6 W m−2.

Zhang’s current affiliation: Department of Earth and Planetary Sciences, The Johns Hopkins University, Baltimore, Maryland.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Clare E. Singer, csinger@caltech.edu
Save
  • Ackerman A. S., and Coauthors, 2009: Large-eddy simulations of a drizzling, stratocumulus-topped marine boundary layer. Mon. Wea. Rev., 137, 10831110, https://doi.org/10.1175/2008MWR2582.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barker, H. W., and Coauthors, 2003: Assessing 1D atmospheric solar radiative transfer models: Interpretation and handling of unresolved clouds. J. Climate, 16, 26762699, https://doi.org/10.1175/1520-0442(2003)016<2676:ADASRT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barker, H. W., S. Kato, and T. Wehr, 2012: Computation of solar radiative fluxes by 1D and 3D methods using cloudy atmospheres inferred from A-Train satellite data. Surv. Geophys., 33, 657676, https://doi.org/10.1007/s10712-011-9164-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barker, H. W., J. N. S. Cole, J. Li, B. Yi, and P. Yang, 2015: Estimation of errors in two-stream approximations of the solar radiative transfer equation for cloudy-sky conditions. J. Atmos. Sci., 72, 40534074, https://doi.org/10.1175/JAS-D-15-0033.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barker, H. W., J. N. S. Cole, J. Li, and K. von Salzen, 2016: A parametrization of 3-D subgrid-scale clouds for conventional GCMs: Assessment using a-train satellite data and solar radiative transfer characteristics. J. Adv. Model. Earth Syst., 8, 566597, https://doi.org/10.1002/2015MS000601.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baum, B. A., P. Yang, A. J. Heymsfield, A. Bansemer, B. H. Cole, A. Merrelli, C. Schmitt, and C. Wang, 2014: Ice cloud single-scattering property models with the full phase matrix at wavelengths from 0.2 to 100 μm. J. Quant. Spectrosc. Radiat. Transfer, 146, 123139, https://doi.org/10.1016/j.jqsrt.2014.02.029.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bender, F. A.-M., H. Rodhe, R. J. Charlson, A. M. L. Ekman, and N. Loeb, 2006: 22 views of the global albedo—Comparison between 20 GCMs and two satellites. Tellus, 58A, 320330, https://doi.org/10.1111/j.1600-0870.2006.00181.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blossey, P. N., and Coauthors, 2013: Marine low cloud sensitivity to an idealized climate change: The CGILS LES intercomparison. J. Adv. Model. Earth Syst., 5, 234258, https://doi.org/10.1002/jame.20025.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., and M. F. Khairoutdinov, 2015: Convective self-aggregation feedbacks in near-global cloud-resolving simulations of an aquaplanet. J. Adv. Model. Earth Syst., 7, 17651787, https://doi.org/10.1002/2015MS000499.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brient, F., R. Roehrig, and A. Voldoire, 2019: Evaluating marine stratocumulus clouds in the CNRM-CM6-1 model using short-term hindcasts. J. Adv. Model. Earth Syst., 11, 127148, https://doi.org/10.1029/2018MS001461.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cahalan, R., and W. Wiscombe, 1992: Plane-parallel albedo bias. Proc. 2nd Atmospheric Radiation Measurement (ARM) Science Team Meeting, Denver, CO, U.S Department of Energy Office of Energy Research Office of Health and Environmental Research Environmental Sciences Division, 35 pp.

    • Search Google Scholar
    • Export Citation
  • Cahalan, R. F., W. Ridgway, W. J. Wiscombe, and S. Gollmer, 1994: Independent pixel and Monte Carlo estimates of stratocumulus albedo. J. Atmos. Sci., 51, 37763790, https://doi.org/10.1175/1520-0469(1994)051<3776:IPAMCE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Castro, E., T. Ishida, Y. Takahashi, H. Kubota, G. J. Perez, and J. S. Marciano, 2020: Determination of cloud-top height through three-dimensional cloud reconstruction using DIWATA-1 data. Sci. Rep., 10, 7570, https://doi.org/10.1038/s41598-020-64274-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cesana, G., A. D. Del Genio, and H. Chepfer, 2019: The cumulus and stratocumulus Cloudsat-CALIPSO dataset (CASCCAD). Earth Syst. Sci. Data, 11, 17451764, https://doi.org/10.5194/essd-11-1745-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, Y., I. Lopez-Gomez, A. Jaruga, J. He, C. M. Kaul, and T. Schneider, 2020: Unified entrainment and detrainment closures for extended eddy-diffusivity mass-flux schemes. J. Adv. Model. Earth Syst., 12, e2020MS002162, https://doi.org/10.1029/2020MS002162.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cole, J. N. S., H. W. Barker, W. O’Hirok, E. E. Clothiaux, M. F. Khairoutdinov, and D. A. Randall, 2005a: Atmospheric radiative transfer through global arrays of 2D clouds. Geophys. Res. Lett., 32, L19817, https://doi.org/10.1029/2005GL023329.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cole, J. N. S., H. W. Barker, D. A. Randall, M. F. Khairoutdinov, and E. E. Clothiaux, 2005b: Global consequences of interactions between clouds and radiation at scales unresolved by global climate models. Geophys. Res. Lett., 32, L06703, https://doi.org/10.1029/2004GL020945.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emde, C., and Coauthors, 2016: The libRadtran software package for radiative transfer calculations (version 2.0.1). Geosci. Model Dev., 9, 16471672, https://doi.org/10.5194/gmd-9-1647-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Engström, A., F. A.-M. Bender, R. J. Charlson, and R. Wood, 2015: The nonlinear relationship between albedo and cloud fraction on near-global, monthly mean scale in observations and in the cmip5 model ensemble. Geophys. Res. Lett., 42, 95719578, https://doi.org/10.1002/2015GL066275.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frame, J. W., J. L. Petters, P. M. Markowski, and J. Y. Harrington, 2009: An application of the tilted independent pixel approximation to cumulonimbus environments. Atmos. Res., 91, 127136, https://doi.org/10.1016/j.atmosres.2008.05.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., and Coauthors, 2006: Daytime convective development over land: A model intercomparison based on LBA observations. Quart. J. Roy. Meteor. Soc., 132, 317344, https://doi.org/10.1256/qj.04.147.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griewank, P. J., T. Heus, N. P. Lareau, and R. A. J. Neggers, 2020: Size dependence in chord characteristics from simulated and observed continental shallow cumulus. Atmos. Chem. Phys., 20, 102211102230, https://doi.org/10.5194/acp-20-10211-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gristey, J. J., and Coauthors, 2020: Surface solar irradiance in continental shallow cumulus fields: Observations and large-eddy simulation. J. Atmos. Sci., 77, 10651080, https://doi.org/10.1175/JAS-D-19-0261.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., C. Schmitt, and A. Bansemer, 2013: Ice cloud particle size distributions and pressure-dependent terminal velocities from in situ observations at temperatures from 0° to −86°C. J. Atmos. Sci., 70, 41234154, https://doi.org/10.1175/JAS-D-12-0124.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hogan, R. J., and J. K. P. Shonk, 2013: Incorporating the effects of 3D radiative transfer in the presence of clouds into two-stream multilayer radiation schemes. J. Atmos. Sci., 70, 708724, https://doi.org/10.1175/JAS-D-12-041.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hogan, R. J., and A. Bozzo, 2018: A flexible and efficient radiation scheme for the ECMWF model. J. Adv. Model. Earth Syst., 10, 19902008, https://doi.org/10.1029/2018MS001364.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hogan, R. J., M. D. Fielding, H. W. Barker, N. Villefranque, and S. A. K. Schäfer, 2019: Entrapment: An important mechanism to explain the shortwave 3D radiative effect of clouds. J. Atmos. Sci., 2019, 4866, https://doi.org/10.1175/JAS-D-18-0366.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hourdin, F., and Coauthors, 2020: LMDZ6A: The atmospheric component of the IPSL climate model with improved and better tuned physics. J. Adv. Model. Earth Syst., 12, e2019MS001892, https://doi.org/10.1029/2019MS001892.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jeevanjee, N., and D. M. Romps, 2013: Convective self-aggregation, cold pools, and domain size. Geophys. Res. Lett., 40, 994998, https://doi.org/10.1002/grl.50204.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kato, S., T. P. Ackerman, J. H. Mather, and E. E. Clothiaux, 1999: The k-distribution method and correlated-k approximation for a shortwave radiative transfer model. J. Quant. Spectrosc. Radiat. Transfer, 62, 109121, https://doi.org/10.1016/S0022-4073(98)00075-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaul, C. M., J. Teixeira, and K. Suzuki, 2015: Sensitivities in large-eddy simulations of mixed-phase arctic stratocumulus clouds using a simple microphysics approach. Mon. Wea. Rev., 143, 43934421, https://doi.org/10.1175/MWR-D-14-00319.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M. F., and D. A. Randall, 2001: A cloud resolving model as a cloud parameterization in the NCAR community climate system model: Preliminary results. Geophys. Res. Lett., 28, 36173620, https://doi.org/10.1029/2001GL013552.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klinger, C., and B. Mayer, 2016: The Neighboring Column Approximation (NCA) – A fast approach for the calculation of 3D thermal heating rates in cloud resolving models. J. Quant. Spectrosc. Radiat. Transfer, 168, 1728, https://doi.org/10.1016/j.jqsrt.2015.08.020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klinger, C., and B. Mayer, 2020: Neighboring column approximation–An improved 3D thermal radiative transfer approximation for non-rectangular grids. J. Adv. Model. Earth Syst., 12, e2019MS001843, https://doi.org/10.1029/2019MS001843.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kooperman, G. J., M. S. Pritchard, M. A. Burt, M. D. Branson, and D. A. Randall, 2016: Robust effects of cloud superparameterization on simulated daily rainfall intensity statistics across multiple versions of the community earth system model. J. Adv. Model. Earth Syst., 8, 140165, https://doi.org/10.1002/2015MS000574.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marchand, R., T. Ackerman, M. Smyth, and W. B. Rossow, 2010: A review of cloud top height and optical depth histograms from MISR, ISCCP, and MODIS. J. Geophys. Res., 115, D16206, https://doi.org/10.1029/2009JD013422.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshak, A., and A. Davis, Eds., 2005: 3D Radiative Transfer in Cloudy Atmospheres., Springer, 688 pp., https://doi.org/10.1007/3-540-28519-9.

  • Marshak, A., A. Davis, W. Wiscombe, and R. Cahalan, 1995a: Radiative smoothing in fractal clouds. J. Geophys. Res., 100, 26247, https://doi.org/10.1029/95JD02895.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshak, A., A. Davis, W. Wiscombe, and G. Titov, 1995b: The verisimilitude of the independent pixel approximation used in cloud remote sensing. Remote Sens. Environ., 52, 7178, https://doi.org/10.1016/0034-4257(95)00016-T.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mayer, B., 2009: Radiative transfer in the cloudy atmosphere. EPJ Web Conf., 1, 7599, https://doi.org/10.1140/epjconf/e2009-00912-1.

  • Mayer, B., and A. Kylling, 2005: Technical note: The LibRadtran software package for radiative transfer calculations - description and examples of use. Atmos. Chem. Phys., 5, 18551877, https://doi.org/10.5194/acp-5-1855-2005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Myhre, G., and Coauthors, 2013: Anthropogenic and natural radiative forcing. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 659740.

    • Search Google Scholar
    • Export Citation
  • O’Hirok, W., and C. Gautier, 1998: A three-dimensional radiative transfer model to investigate the solar radiation within a cloudy atmosphere. Part I: Spatial effects. J. Atmos. Sci., 55, 21622179, https://doi.org/10.1175/1520-0469(1998)055<2162:ATDRTM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Hirok, W., and C. Gautier, 2005: The impact of model resolution on differences between independent column approximation and Monte Carlo estimates of shortwave surface irradiance and atmospheric heating rate. J. Atmos. Sci., 62, 29392951, https://doi.org/10.1175/JAS3519.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Okata, M., T. Nakajima, K. Suzuki, T. Inoue, T. Y. Nakajima, and H. Okamoto, 2017: A study on radiative transfer effects in 3-D cloudy atmosphere using satellite data. J. Geophys. Res. Atmos., 122, 443468, https://doi.org/10.1002/2016JD025441.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oreopoulos, L., and H. W. Barker, 1999: Accounting for subgrid-scale cloud variability in a multi-layer 1D solar radiative transfer algorithm. Quart. J. Roy. Meteor. Soc., 125, 301330, https://doi.org/10.1002/qj.49712555316.

    • Search Google Scholar
    • Export Citation
  • Patrizio, C. R., and D. A. Randall, 2019: Sensitivity of convective self-aggregation to domain size. J. Adv. Model. Earth Syst., 11, 19952019, https://doi.org/10.1029/2019MS001672.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pincus, R., H. W. Barker, and J.-J. Morcrette, 2003: A fast, flexible, approximate technique for computing radiative transfer in inhomogeneous cloud fields. J. Geophys. Res. Atmos., 108, 4376, https://doi.org/10.1029/2002JD003322.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pressel, K. G., C. M. Kaul, T. Schneider, Z. Tan, and S. Mishra, 2015: Large-eddy simulation in an anelastic framework with closed water and entropy balances. J. Adv. Model. Earth Syst., 7, 14251456, https://doi.org/10.1002/2015MS000496.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pressel, K. G., S. Mishra, T. Schneider, C. M. Kaul, and Z. Tan, 2017: Numerics and subgrid-scale modeling in large eddy simulations of stratocumulus clouds. J. Adv. Model. Earth Syst., 9, 13421365, https://doi.org/10.1002/2016MS000778.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romps, D. M., and R. Öktem, 2018: Observing clouds in 4D with multiview stereophotogrammetry. Bull. Amer. Meteor. Soc., 99, 25752586, https://doi.org/10.1175/BAMS-D-18-0029.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., and E. Duenas, 2004: The International Satellite Cloud Climatology Project (ISCCP) web site: An online resource for research. Bull. Amer. Meteor. Soc., 85, 167172, https://doi.org/10.1175/BAMS-85-2-167.

    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., R. A. Schiffer, W. B. Rossow, and R. A. Schiffer, 1999: Advances in understanding clouds from ISCCP. Bull. Amer. Meteor. Soc., 80, 22612287, https://doi.org/10.1175/1520-0477(1999)080<2261:AIUCFI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schäfer, S. A. K., R. J. Hogan, C. Klinger, J. C. Chiu, and B. Mayer, 2016: Representing 3-d cloud radiation effects in two-stream schemes: 1. Longwave considerations and effective cloud edge length. J. Geophys. Res. Atmos., 121, 85678582, https://doi.org/10.1002/2016JD024876.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, T., J. Teixeira, C. S. Bretherton, F. Brient, K. G. Pressel, C. Schär, and A. P. Siebesma, 2017: Climate goals and computing the future of clouds. Nat. Climate Change, 7, 35, https://doi.org/10.1038/nclimate3190.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seifert, A., and K. D. Beheng, 2006: A two-moment cloud microphysics parameterization for mixed-phase clouds. Part 1: Model description. Meteor. Atmos. Phys., 92, 4566, https://doi.org/10.1007/s00703-005-0112-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shen, Z., K. G. Pressel, Z. Tan, and T. Schneider, 2020: Statistically steady state large-eddy simulations forced by an idealized GCM: 1. Forcing framework and simulation characteristics. J. Adv. Model. Earth Syst., 12, e2019MS001814, https://doi.org/10.1029/2019MS001814.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shonk, J. K. P., and R. J. Hogan, 2008: Tripleclouds: An efficient method for representing horizontal cloud inhomogeneity in 1D radiation schemes by using three regions at each height. J. Climate, 21, 23522370, https://doi.org/10.1175/2007JCLI1940.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Siebesma, A. P., and Coauthors, 2003: A large eddy simulation intercomparison study of shallow cumulus convection. J. Atmos. Sci., 60, 12011219, https://doi.org/10.1175/1520-0469(2003)60<1201:ALESIS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Singer, C., I. Lopez-Gomez, X. Zhang, and T. Schneider, 2020: Data for “Top-of-atmosphere albedo bias from neglecting three-dimensional radiative transfer through clouds” (version 2.0). CaltechDATA, accessed 1 February 2021, https://doi.org/10.22002/D1.1637.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., D. O’Brien, P. J. Webster, P. Pilewski, S. Kato, and J. Li, 2015: The albedo of earth. Rev. Geophys., 53, 141163, https://doi.org/10.1002/2014RG000449.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevens, B., and Coauthors, 2005: Evaluation of large-eddy simulations via observations of nocturnal marine stratocumulus. Mon. Wea. Rev., 133, 14431462, https://doi.org/10.1175/MWR2930.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stubenrauch, C. J., W. Rossow, and S. Kinne, 2012: Assessment of global cloud data sets from satellites: A project of the world climate research programme Global Energy and Water Cycle Experiment (GEWEX) radiation panel. World Climate Research Programme Tech. Rep. 23/2012, 176 pp, https://www.wcrp-climate.org/documents/GEWEX_Cloud_Assessment_2012.pdf.

    • Search Google Scholar
    • Export Citation
  • Stubenrauch, C. J., and Coauthors, 2013: Assessment of Global cloud datasets from satellites: Project and database initiated by the GEWEX radiation panel. Bull. Amer. Meteor. Soc., 94, 10311049, https://doi.org/10.1175/BAMS-D-12-00117.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • vanZanten, M. C., and Coauthors, 2011: Controls on precipitation and cloudiness in simulations of trade-wind cumulus as observed during RICO. J. Adv. Model. Earth Syst., 3, e2011MS000056, https://doi.org/10.1029/2011MS000056.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Várnai, T., and R. Davies, 1999: Effects of cloud heterogeneities on shortwave radiation: Comparison of cloud-top variability and internal heterogeneity. J. Atmos. Sci., 56, 42064224, https://doi.org/10.1175/1520-0469(1999)056<4206:EOCHOS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Veerman, M. A., X. Pedruzo-Bagazgoitia, F. Jakub, J. Vilà-Guerau de Arellano, and C. C. Heerwaarden, 2020: Three-dimensional radiative effects by shallow cumulus clouds on dynamic heterogeneities over a vegetated surface. J. Adv. Model. Earth Syst., 12, e2019MS001990, https://doi.org/10.1029/2019MS001990.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Villefranque, N., R. Fournier, F. Couvreux, S. Blanco, C. Cornet, V. Eymet, V. Forest, and J. Tregan, 2019: A path-tracing Monte Carlo library for 3-D radiative transfer in highly resolved cloudy atmospheres. J. Adv. Model. Earth Syst., 11, 24492473, https://doi.org/10.1029/2018MS001602.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Voigt, A., B. Stevens, J. Bader, and T. Mauritsen, 2013: The observed hemispheric symmetry in reflected shortwave irradiance. J. Climate, 26, 468477, https://doi.org/10.1175/JCLI-D-12-00132.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wing, A. A., K. Emanuel, C. E. Holloway, and C. Muller, 2017: Convective self-aggregation in numerical simulations: A review. Surv. Geophys., 38, 11731197, https://doi.org/10.1007/s10712-017-9408-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wissmeier, U., R. Buras, and B. Mayer, 2013: paNTICA: A fast 3D radiative transfer scheme to calculate surface solar irradiance for NWP and LES models. J. Appl. Meteor. Climatol., 52, 16981715, https://doi.org/10.1175/JAMC-D-12-0227.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wyser, K., 1998: The effective radius in ice clouds. J. Climate, 11, 17931802, https://doi.org/10.1175/1520-0442(1998)011<1793:TERIIC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, P., and Coauthors, 2013: Spectrally consistent scattering, absorption, and polarization properties of atmospheric ice crystals at wavelengths from 0.2 to 100 μm. J. Atmos. Sci., 70, 330347, https://doi.org/10.1175/JAS-D-12-039.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, M., and Coauthors, 2018: The GFDL global atmosphere and land model AM4.0/LM4.0: 2. Model description, sensitivity studies, and tuning strategies. J. Adv. Model. Earth Syst., 10, 735769, https://doi.org/10.1002/2017MS001209.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 542 0 0
Full Text Views 4235 3251 118
PDF Downloads 1048 203 10