Impact of Elevated Kelvin–Helmholtz Billows on the Atmospheric Boundary Layer

Qingfang Jiang aNaval Research Laboratory, Monterey, California

Search for other papers by Qingfang Jiang in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-4054-577X
Restricted access

Abstract

The impact of Kelvin–Helmholtz billows (KHBs) in an elevated shear layer (ESL) on the underlying atmospheric boundary layer (BL) is examined utilizing a group of large-eddy simulations. In these simulations, KHBs develop in the ESL and experience exponential growth, saturation, and exponential decay stages. In response, strong wavy motion occurs in the BL, inducing rotor circulations near the surface when the BL is stable. During the saturation stage, secondary instability develops in the ESL and the wavy BL almost simultaneously, followed by the breakdown of the quasi-two-dimensional KH billows and BL waves into three-dimensional turbulence. Consequently, during and after a KH event, the underlying BL becomes more turbulent with its depth increased and stratification weakened substantially, suggestive of significant lasting impact of elevated KH billows on the atmospheric BL. The eventual impact of KHBs on the BL is found to be sensitive to both the ESL and BL characteristics.

For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Qingfang Jiang, qingfang.jiang@nrlmry.navy.mil

Abstract

The impact of Kelvin–Helmholtz billows (KHBs) in an elevated shear layer (ESL) on the underlying atmospheric boundary layer (BL) is examined utilizing a group of large-eddy simulations. In these simulations, KHBs develop in the ESL and experience exponential growth, saturation, and exponential decay stages. In response, strong wavy motion occurs in the BL, inducing rotor circulations near the surface when the BL is stable. During the saturation stage, secondary instability develops in the ESL and the wavy BL almost simultaneously, followed by the breakdown of the quasi-two-dimensional KH billows and BL waves into three-dimensional turbulence. Consequently, during and after a KH event, the underlying BL becomes more turbulent with its depth increased and stratification weakened substantially, suggestive of significant lasting impact of elevated KH billows on the atmospheric BL. The eventual impact of KHBs on the BL is found to be sensitive to both the ESL and BL characteristics.

For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Qingfang Jiang, qingfang.jiang@nrlmry.navy.mil

Supplementary Materials

    • Supplemental Materials (GIF 7.69 MB)
Save
  • Atlas, D., J. I. Metcalf, J. H. Richter, and E. E. Gossard, 1970: The birth of “CAT” and microscale turbulence. J. Atmos. Sci., 27, 903913, https://doi.org/10.1175/1520-0469(1970)027<0903:TBOAMT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnes, H. C., J. P. Zagrodnik, L. A. McMurdie, A. K. Rowe, and R. A. Houze Jr., 2018: Kelvin–Helmholtz waves in precipitating midlatitude cyclones. J. Atmos. Sci., 75, 27632785, https://doi.org/10.1175/JAS-D-17-0365.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beare, R. J., and Coauthors, 2006: An intercomparison of large-eddy simulations of the stable boundary layer. Bound.-Layer Meteor., 118, 247272, https://doi.org/10.1007/s10546-004-2820-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Belušić, D., M. Zagar, and B. Grisogono, 2007: Numerical simulation of pulsations in the bora wind. Quart. J. Roy. Meteor. Soc., 133, 13711388, https://doi.org/10.1002/qj.129.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blumen, W., R. Banta, S. P. Burns, D. C. Fritts, R. Newsom, G. S. Poulos, and J. Sun, 2001: Turbulence statistics of a Kelvin–Helmholtz billow event observed in the night-time boundary layer during the Cooperative Atmosphere–Surface Exchange Study field program. Dyn. Atmos. Oceans, 34, 189204, https://doi.org/10.1016/S0377-0265(01)00067-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bourgault, D., F. J. Saucier, and C. A. Lin, 2001: Shear instability in the St. Lawrence Estuary, Canada: A comparison of fine-scale observations and estuarine circulation model results. J. Geophys. Res., 106, 93939409, https://doi.org/10.1029/2000JC900165.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Browning, K. A., and C. D. Watkins, 1970: Observations of clear air turbulence by high power radar. Nature, 227, 260263, https://doi.org/10.1038/227260a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chimonas, G., and D. Fua, 1984: Dispersion of small-scale shear instabilities. J. Atmos. Sci., 41, 10851091, https://doi.org/10.1175/1520-0469(1984)041<1085:DOSSSI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Conrick, R., C. F. Mass, and Q. Zhong, 2018: Simulated Kelvin–Helmholtz waves over terrain and their microphysical implications. J. Atmos. Sci., 75, 27872800, https://doi.org/10.1175/JAS-D-18-0073.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Corcos, G. M., and F. S. Sherman, 1976: Vorticity concentration and the dynamics of unstable free shear layers. J. Fluid Mech., 73, 241264, https://doi.org/10.1017/S0022112076001365.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cronenwett, W. T., G. B. Walker, and R. L. Inman, 1972: Acoustic sounding of meteorological phenomena in the planetary boundary layer. J. Appl. Meteor., 11, 13511358, https://doi.org/10.1175/1520-0450(1972)011<1351:ASOMPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doyle, J. D., V. Grubišić, W. O. J. Brown, S. F. J. De Wekker, A. Dörnbrack, Q. Jiang, S. D. Mayor, and M. Weissmann, 2009: Observations and numerical simulations of subrotor vortices during T-REX. J. Atmos. Sci., 66, 12291249, https://doi.org/10.1175/2008JAS2933.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Friedrich, K., D. E. Kingsmill, C. Flamant, H. V. Murphy, and R. M. Wakimoto, 2008: Kinematic and moisture characteristics of a nonprecipitating cold front observed during IHOP. Part II: Alongfront structures. Mon. Wea. Rev., 136, 37963821, https://doi.org/10.1175/2008MWR2360.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., P. M. Franke, K. Wan, T. Lund, and J. Werne, 2011: Computation of clear-air radar backscatter from numerical simulations of turbulence: 2. Backscatter moments throughout the lifecycle of a Kelvin–Helmholtz instability. J. Geophys. Res., 116, D11105, https://doi.org/10.1029/2010JD014618.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., K. Wan, J. A. Werne, T. S. Lund, and J. H. Hecht, 2014a: Modeling the implications of Kelvin–Helmholtz instability dynamics for airglow observations. J. Geophys. Res. Atmos., 119, 88588871, https://doi.org/10.1002/2014JD021737.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., G. Baumgarten, K. Wan, J. Werne, and T. Lund, 2014b: Quantifying Kelvin–Helmholtz instability dynamics observed in noctilucent clouds: 2. Modeling and interpretation of observations. J. Geophys. Res. Atmos., 119, 93599375, https://doi.org/10.1002/2014JD021833.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gossard, E. E., J. H. Richter, and D. R. Jensen, 1973: Effect of wind shear on atmospheric wave instabilities revealed by FM/CW radar observations. Bound.-Layer Meteor., 4, 113131, https://doi.org/10.1007/BF02265227.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Helmholtz, H., 1868: Über discontinuierliche Flüssigkeits-Bewegungen Monatsberichte der Königlichen Preussische Akademie der Wissenschaften zu Berlin (On discontinuous movements of fluids). Philos. Mag., 36, 337346.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Howard, L., 1961: Note on a paper of John W. Miles. J. Fluid Mech., 17, 509512, https://doi.org/10.1017/S0022112061000317.

  • Jiang, Q., J. D. Doyle, and R. B. Smith, 2006: Interactions between lee waves and boundary layers. J. Atmos. Sci., 63, 617633, https://doi.org/10.1175/JAS3640.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, Q., J. D. Doyle, V. Grubišić, and R. B. Smith, 2010: Turbulence characteristics in an elevated shear layer over Owens Valley. J. Atmos. Sci., 67, 23552371, https://doi.org/10.1175/2010JAS3156.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, Q., Q. Wang, S. Wang, and S. Gaberšek, 2020: Turbulence adjustment and scaling in an offshore convective internal boundary layer: A CASPER case study. J. Atmos. Sci., 77, 16611681, https://doi.org/10.1175/JAS-D-19-0189.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kelvin, L., 1871: Hydrokinetic solutions and observations. Philos. Mag., 42, 362377, https://doi.org/10.1080/14786447108640585.

  • Kjelaas, A. G., D. W. Beran, W. H. Hooke, and B. R. Bean, 1974: Waves observed in the planetary boundary layer using an array of acoustic sounders. J. Atmos. Sci., 31, 20402045, https://doi.org/10.1175/1520-0469(1974)031<2040:WOITPB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., and D. R. Durran, 1983: An upper boundary condition permitting internal gravity wave radiation in numerical mesoscale models. Mon. Wea. Rev., 111, 430444, https://doi.org/10.1175/1520-0493(1983)111<0430:AUBCPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luce, H., L. Kantha, M. Yabuki, and H. Hashiguchi, 2018: Atmospheric Kelvin–Helmholtz billows captured by the MU radar, lidars, and a fish-eye camera. Earth Planets Space, 70, 162, https://doi.org/10.1186/s40623-018-0935-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lyulyukin, V., and Coauthors, 2019: Sodar observation of the ABL structure and waves over the Black Sea offshore site. Atmosphere, 10, 811, https://doi.org/10.3390/atmos10120811.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Medina, S., and R. A. Houze Jr., 2016: Kelvin–Helmholtz waves in extratropical cyclones passing over mountain ranges. Quart. J. Roy. Meteor. Soc., 142, 13111319, https://doi.org/10.1002/qj.2734.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miles, J., 1961: On the stability of heterogeneous shear flows. J. Fluid Mech., 17, 496508, https://doi.org/10.1017/S0022112061000305.

  • Moeng, C. H., 1984: A large-eddy-simulation model for the study of planetary boundary-layer turbulence. J. Atmos. Sci., 41, 20522062, https://doi.org/10.1175/1520-0469(1984)041<2052:ALESMF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mondal, S., and Coauthors, 2019: On the long lasting “C-type” structures in the sodium lidargram: The lifetime of Kelvin–Helmholtz billows in the mesosphere and lower thermosphere region. J. Geophys. Res. Space Phys., 124, 31103124, https://doi.org/10.1029/2019JA026630.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muschinski, A., 1996: Possible effect of Kelvin–Helmholtz instability on VHF radar observations of the mean vertical wind. J. Appl. Meteor., 35, 22102217, https://doi.org/10.1175/1520-0450(1996)035<2210:PEOKHI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Na, J. S., E. K. Jin, and J. S. Lee, 2014: Investigation of Kelvin–Helmholtz instability in the stable boundary layer using large eddy simulation. J. Geophys. Res. Atmos., 119, 78767888, https://doi.org/10.1002/2013JD021414.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakanishi, M., R. Shibuya, J. Ito, and H. Niino, 2014: Large-eddy simulation of a residual layer: Low-level jet, convective rolls, and Kelvin–Helmholtz instability. J. Atmos. Sci., 71, 44734491, https://doi.org/10.1175/JAS-D-13-0402.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newsom, R. K., and R. M. Banta, 2003: Shear-flow instability in the stable nocturnal boundary layer as observed by Doppler lidar during CASES-99. J. Atmos. Sci., 60, 1633, https://doi.org/10.1175/1520-0469(2003)060<0016:SFIITS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petenko, I., S. Argentini, G. Casasanta, M. Kallistratova, R. Sozzi, and A. Viola, 2016: Wavelike structures in the turbulent layer during the morning development of convection at Dome C, Antarctic. Bound.-Layer Meteor., 161, 289307, https://doi.org/10.1007/s10546-016-0173-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petenko, I., S. Argentini, G. Casasanta, C. Genthon, and M. Kallistratova, 2019: Stable surface-based turbulent layer during the polar winter at Dome C, Antarctica: Sodar and in-situ observations. Bound.-Layer Meteor., 171, 101128, https://doi.org/10.1007/s10546-018-0419-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petenko, I., G. Casasanta, S. Bucci, M. Kallistratova, R. Sozzi, and S. Argentini, 2020: Turbulence, low-level jets, and waves in the Tyrrhenian coastal zone as shown by sodar. Atmosphere, 11, 28, https://doi.org/10.3390/atmos11010028.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Plant, R. S., and G. J. Keith, 2007: Occurrence of Kelvin–Helmholtz billows in sea-breeze circulations. Bound.-Layer Meteor., 122, 115, https://doi.org/10.1007/s10546-006-9089-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rahmani, M., G. A. Lawrence, and B. R. Seymour, 2014: The effect of Reynolds number on mixing in Kelvin–Helmholtz billows. J. Fluid Mech., 759, 612641, https://doi.org/10.1017/jfm.2014.588.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Samelson, R. M., and E. D. Skyllingstad, 2016: Frontogenesis and turbulence: A numerical simulation. J. Atmos. Sci., 73, 50255040, https://doi.org/10.1175/JAS-D-16-0145.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scorer, R., 1949: Theory of waves in the lee of mountains. Quart. J. Roy. Meteor. Soc., 75, 4156, https://doi.org/10.1002/qj.49707532308.

  • Sekioka, M., 1970: Application of Kelvin–Helmholtz instability to clear air turbulence. J. Appl. Meteor., 9, 896899, https://doi.org/10.1175/1520-0450(1970)009<0896:AOKHIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sha, W., T. Kawamura, and H. Ueda, 1991: A numerical study on sea/land breezes as a gravity current: Kelvin–Helmholtz billows and inland penetration of the sea-breeze front. J. Atmos. Sci., 48, 16491665, https://doi.org/10.1175/1520-0469(1991)048<1649:ANSOSB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smyth, W. D., 2003: Secondary Kelvin–Helmholtz instability in weakly stratified shear flow. J. Fluid Mech., 497, 6798, https://doi.org/10.1017/S0022112003006591.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smyth, W. D., and J. N. Moum, 2012: Ocean mixing by Kelvin–Helmholtz instability. Oceanography, 25 (2), 140149, https://doi.org/10.5670/oceanog.2012.49.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smyth, W. D., J. D. Nash, and J. N. Moum, 2005: Differential diffusion in breaking Kelvin–Helmholtz billows. J. Phys. Oceanogr., 35, 10041022, https://doi.org/10.1175/JPO2739.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., J. C. McWilliams, and C.-H. Moeng, 1994: Subgrid-scale model for large-eddy simulation of planetary boundary-layer flows. Bound.-Layer Meteor., 71, 247276, https://doi.org/10.1007/BF00713741.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., J. C. Weil, E. G. Patton, H. J. J. Jonker, and D. V. Mironov, 2016: Turbulent winds and temperature fronts in large-eddy simulations of the stable atmospheric boundary layer. J. Atmos. Sci., 73, 18151840, https://doi.org/10.1175/JAS-D-15-0339.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, J., and Coauthors, 2002: Intermittent turbulence associated with a density current passage in the stable boundary layer. Bound.-Layer Meteor., 105, 199219, https://doi.org/10.1023/A:1019969131774.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, J., and Coauthors, 2015: Review of wave–turbulence interactions in the stable atmospheric boundary layer. Rev. Geophys., 53, 956993, https://doi.org/10.1002/2015RG000487.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tanaka, H., 1975: Quasi-linear and non-linear interactions of finite amplitude perturbations in a stably stratified fluid with hyperbolic tangent shear. J. Meteor. Soc. Japan, 53, 132, https://doi.org/10.2151/jmsj1965.53.1_1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van der Linden, S. J. A., B. J. H. van de Wiel, I. Petenko, C. C. van Heerwaarden, P. Baas, and H. J. J. Jonker, 2020: A Businger mechanism for intermittent bursting in the stable boundary layer. J. Atmos. Sci., 77, 33433360, https://doi.org/10.1175/JAS-D-19-0309.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, R., I. M. Stromberg, and P. R. Jonas, 1999: Aircraft observations of sea-breeze frontal structure. Quart. J. Roy. Meteor. Soc., 125, 19591995, https://doi.org/10.1002/qj.49712555804.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zaitseva, D. V., and R. D. Kouznetsov, 2019: Observation of Kelvin–Helmholtz and propagating buoyancy waves in the Antarctic with the help of sodar and microbarograph. Earth Environ. Sci., 231, 012504, https://doi.org/10.1088/1755-1315/231/1/012054.

    • Search Google Scholar
    • Export Citation
  • Zaitseva, D. V., M. A. Kallistratova, V. S. Lyulyukin, R. D. Kouznetsov, and D. D. Kuznetsov, 2018: The effect of internal gravity waves on fluctuations in meteorological parameters of the atmospheric boundary layer. Atmos. Oceanic Phys., 54, 173181, https://doi.org/10.1134/S0001433818020160.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, B., and F. K. Chow, 2013: Nested large-eddy simulations of the intermittently turbulent stable atmospheric boundary layer over real terrain. J. Atmos. Sci., 71, 10211039, https://doi.org/10.1175/JAS-D-13-0168.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 308 0 0
Full Text Views 384 173 17
PDF Downloads 379 150 19