Gravity Wave Focusing on the Antarctic Polar Vortex Using Gaussian Beam Approximation in Horizontally Nonuniform Flows

Claudio Rodas aDepartment of Physics, FaCENA, Universidad Nacional del Nordeste, Corrientes, Argentina

Search for other papers by Claudio Rodas in
Current site
Google Scholar
PubMed
Close
and
Manuel Pulido aDepartment of Physics, FaCENA, Universidad Nacional del Nordeste, Corrientes, Argentina
bIMIT and IFAECI, CONICET, Corrientes, Argentina

Search for other papers by Manuel Pulido in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Ray path theory is an asymptotic approximation to the wave equations. It represents efficiently gravity wave propagation in nonuniform background flows so that it is useful to develop schemes of gravity wave effects in general circulation models. One of the main limitations of ray path theory to be applied in realistic flows is in caustics where rays intersect and the ray solution has a singularity. Gaussian beam approximation is a higher-order asymptotic ray path approximation that considers neighboring rays to the central one, and thus, it is free of the singularities produced by caustics. A previous implementation of the Gaussian beam approximation assumes a horizontally uniform flow. In this work, we extend the Gaussian beam approximation to include horizontally nonuniform flows. Under these conditions, the wave packet can undergo horizontal wave refraction producing changes in the horizontal wavenumber, which affects the ray path as well as the ray tube cross-sectional area and so the wave amplitude via wave action conservation. As an evaluation of the Gaussian beam approximation in horizontally nonuniform flows, a series of proof-of-concept experiments is conducted comparing the approximation with the linear wave solution given by the WRF Model. A very good agreement in the wave field is found. An evaluation is conducted with conditions that mimic the Antarctic polar vortex and the orography of the southern flank of South America. The Gaussian beam approximation nicely reproduces the expected asymmetry of the wave field. A much stronger disturbance propagates toward higher latitudes (polar vortex) compared to lower latitudes.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Manuel Pulido, pulido@exa.unne.edu.ar

Abstract

Ray path theory is an asymptotic approximation to the wave equations. It represents efficiently gravity wave propagation in nonuniform background flows so that it is useful to develop schemes of gravity wave effects in general circulation models. One of the main limitations of ray path theory to be applied in realistic flows is in caustics where rays intersect and the ray solution has a singularity. Gaussian beam approximation is a higher-order asymptotic ray path approximation that considers neighboring rays to the central one, and thus, it is free of the singularities produced by caustics. A previous implementation of the Gaussian beam approximation assumes a horizontally uniform flow. In this work, we extend the Gaussian beam approximation to include horizontally nonuniform flows. Under these conditions, the wave packet can undergo horizontal wave refraction producing changes in the horizontal wavenumber, which affects the ray path as well as the ray tube cross-sectional area and so the wave amplitude via wave action conservation. As an evaluation of the Gaussian beam approximation in horizontally nonuniform flows, a series of proof-of-concept experiments is conducted comparing the approximation with the linear wave solution given by the WRF Model. A very good agreement in the wave field is found. An evaluation is conducted with conditions that mimic the Antarctic polar vortex and the orography of the southern flank of South America. The Gaussian beam approximation nicely reproduces the expected asymmetry of the wave field. A much stronger disturbance propagates toward higher latitudes (polar vortex) compared to lower latitudes.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Manuel Pulido, pulido@exa.unne.edu.ar
Save
  • Alexander, M. J., and H. Teitelbaum, 2007: Observation and analysis of a large amplitude mountain wave event over the Antarctic Peninsula. J. Geophys. Res., 112, D21103, https://doi.org/10.1029/2006JD008368.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alexander, M. J., S. D. Eckermann, D. Broutman, and J. Ma, 2009: Momentum flux estimates for South Georgia Island mountain waves in the stratosphere observed via satellite. Geophys. Res. Lett., 36, L12816, https://doi.org/10.1029/2009GL038587.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alexander, M. J., and Coauthors, 2010: Recent developments in gravity wave effects in climate models, and the global distribution of gravity wave momentum flux from observations and models. Quart. J. Roy. Meteor. Soc., 136, 11031124, https://doi.org/10.1002/qj.637.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alonso, M. A., and G. W. Forbes, 1995: Fractional Legendre transformation. J. Phys., 28A, 55095527, https://doi.org/10.1088/0305-4470/28/19/008.

    • Search Google Scholar
    • Export Citation
  • Arnold, V., 1989: Mathematical Methods of Classical Mechanics. Springer-Verlag, 520 pp.

    • Crossref
    • Export Citation
  • Bretherton, F., and C. Garrett, 1968: Wavetrains in inhomogeneous moving media. Proc. Roy. Soc. London, 302A, 529554, https://doi.org/10.1098/rspa.1968.0034.

    • Search Google Scholar
    • Export Citation
  • Broutman, D., J. Rottman, and S. Eckermann, 2002: Maslov’s method for stationary hydrostatic mountain waves. Quart. J. Roy. Meteor. Soc., 128, 11591171, https://doi.org/10.1256/003590002320373247.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, M. G., 2000: The Maslov integral representation of slowly varying dispersive wavetrains in inhomogeneous moving media. Wave Motion, 32, 247–266, https://doi.org/10.1016/S0165-2125(00)00046-9.

    • Crossref
    • Export Citation
  • Bühler, O., and M. McIntyre, 2005: Wave capture and wave–vortex duality. J. Fluid Mech., 534, 6795, https://doi.org/10.1017/S0022112005004374.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cerveny, V., M. M. Popov, and I. Psencik, 1982: Computation of wave fields in inhomogeneous media: Gaussian beam approach. Geophys. J. R. Astron. Soc., 70, 109128, https://doi.org/10.1111/j.1365-246X.1982.tb06394.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durran, D. R., 2013: Numerical Methods for Wave Equations in Geophysical Fluid Dynamics. Vol. 32. Springer Science and Business Media, 465 pp.

  • Fritts, D. C., and M. J. Alexander, 2003: Gravity wave dynamics and effects in the middle atmosphere. Rev. Geophys., 41, 1003, https://doi.org/10.1029/2001RG000106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Greiner, W., and J. Reinhardt, 1996: Field Quantization. Springer, 440 pp.

    • Crossref
    • Export Citation
  • Hasha, A., O. Bühler, and J. Scinocca, 2008: Gravity wave refraction by three-dimensionally varying winds and the global transport of angular momentum. J. Atmos. Sci., 65, 28922906, https://doi.org/10.1175/2007JAS2561.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heale, C. J., and J. B. Snively, 2015: Gravity wave propagation through a vertically and horizontally inhomogeneous background wind. J. Geophys. Res. Atmos., 120, 59315950, https://doi.org/10.1002/2015JD023505.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heyman, E., and L. Felsen, 2001: Gaussian beam and pulsed-beam dynamics: Complex-source and complex-spectrum formulations within and beyond paraxial asymptotics. J. Opt. Soc. Amer., 18A, 15881611, https://doi.org/10.1364/JOSAA.18.001588.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hines, C. O., 1997: Doppler spread parametrization of gravity-wave momentum deposition in the middle atmosphere. Part 1: Basic formulation. J. Atmos. Sol.-Terr. Phys., 59, 371386, https://doi.org/10.1016/S1364-6826(96)00079-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jackson, J. D., 2001: Classical Electrodynamics. 3rd ed. John Wiley and Sons, 124 pp.

  • Jiang, Q., J. D. Doyle, A. Reinecke, R. B. Smith, and S. D. Eckermann, 2013: A modeling study of stratospheric waves over the southern Andes and Drake Passage. J. Atmos. Sci., 70, 16681689, https://doi.org/10.1175/JAS-D-12-0180.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, Q., A. Reinecke, and J. D. Doyle, 2014: Orographic wave drag over the Southern Ocean: A linear theory perspective. J. Atmos. Sci., 71, 42354252, https://doi.org/10.1175/JAS-D-14-0035.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, Q., J. D. Doyle, S. D. Eckermann, and B. P. Williams, 2019: Stratospheric trailing gravity waves from New Zealand. J. Atmos. Sci., 76, 15651586, https://doi.org/10.1175/JAS-D-18-0290.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lighthill, J., 1978: Waves in Fluids. Cambridge University Press, 504 pp.

  • Lott, F., and M. Miller, 1997: A new subgrid-scale orographic drag parametrization: Its formulation and testing. Quart. J. Roy. Meteor. Soc., 123, 101127, https://doi.org/10.1002/qj.49712353704.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McFarlane, N., 1987: The effect of orographically excited gravity wave drag on the general circulation of the lower stratosphere and troposphere. J. Atmos. Sci., 44, 17751800, https://doi.org/10.1175/1520-0469(1987)044<1775:TEOOEG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McLandress, C., T. G. Shepherd, S. Polavarapu, and S. R. Beagley, 2012: Is missing orographic gravity wave drag near 60°S the cause of the stratospheric zonal wind biases in chemistry–climate models? J. Atmos. Sci., 69, 802818, https://doi.org/10.1175/JAS-D-11-0159.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ostrovsky, L. A., and A. I. Potapov, 1999: Modulated Waves: Theory and Applications. Johns Hopkins University Press, 370 pp.

  • Popov, M. M., 1982: A new method of computation of wave fields using Gaussian beams. Wave Motion, 4, 8597, https://doi.org/10.1016/0165-2125(82)90016-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pulido, M., 2005: On the Doppler effect in a transient gravity-wave spectrum. Quart. J. Roy. Meteor. Soc., 131, 12151232, https://doi.org/10.1256/qj.03.220.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pulido, M., and C. Rodas, 2008: Do transient gravity waves in a shear flow break? Quart. J. Roy. Meteor. Soc., 134, 10831094, https://doi.org/10.1002/qj.272.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pulido, M., and J. Thuburn, 2008: The seasonal cycle of gravity wave drag in the middle atmosphere. J. Climate, 21, 46644679, https://doi.org/10.1175/2008JCLI2006.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pulido, M., and C. Rodas, 2011: A higher-order ray approximation applied to orographic gravity waves: Gaussian beam approximation. J. Atmos. Sci., 68, 4660, https://doi.org/10.1175/2010JAS3468.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pulido, M., C. Rodas, D. Dechat, and M. Lucini, 2013: High gravity wave activity observed in Patagonia, Southern America: Generation by a cyclone passage over Andes mountain range. Quart. J. Roy. Meteor. Soc., 139, 451466, https://doi.org/10.1002/qj.1983.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodas, C., and M. Pulido, 2014: The breaking of transience inertio-gravity waves in a shear flow using Gaussian beam approximation. J. Fluid Mech., 759, 676700, https://doi.org/10.1017/jfm.2014.592.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scheffler, G., and M. Pulido, 2017: Estimation of gravity-wave parameters to alleviate the delay in the Antarctic vortex breakup in general circulation models. Quart. J. Roy. Meteor. Soc., 143, 21572167, https://doi.org/10.1002/qj.3074.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scheffler, G., M. Pulido, and C. Rodas, 2018: The role of gravity wave drag optimization in the splitting of the Antarctic vortex in the 2002 sudden stratospheric warming. Geophys. Res. Lett., 45, 67196725, https://doi.org/10.1029/2018GL077993.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scinocca, J., 2003: An accurate spectral nonorographic gravity wave drag parametrization for general circulation models. J. Atmos. Sci., 60, 667682, https://doi.org/10.1175/1520-0469(2003)060<0667:AASNGW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shepherd, T. G., K. Semeniuk, and J. N. Koshyk, 1996: Sponge layer feedbacks in middle-atmosphere models. J. Geophys. Res., 101, 23 44723 464, https://doi.org/10.1029/96JD01994.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shutts, G. J., 1998: Stationary gravity-wave structure in flows with directional wind shear. Quart. J. Roy. Meteor. Soc., 124, 14211442, https://doi.org/10.1002/qj.49712454905.

    • Search Google Scholar
    • Export Citation
  • Shutts, G. J., and S. B. Vosper, 2011: Stratospheric gravity waves revealed in NWP model forecasts. Quart. J. Roy. Meteor. Soc., 137, 303317, https://doi.org/10.1002/qj.763.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, W. Wang, and J. G. Powers, 2005: A description of the Advanced Research WRF version 2. NCAR Tech. Note NCAR/TN-468+STR, 88 pp., https://doi.org/10.5065/D6DZ069T.

    • Crossref
    • Export Citation
  • Smith, R. B., 1980: Linear theory of stratified hydrostatic flow past an isolated mountain. Tellus, 32, 348364, https://doi.org/10.3402/tellusa.v32i4.10590.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. B., 1989: Hydrostatic airflow over mountains. Advances in Geophysics, Vol. 31, Academic Press, 1–41, https://doi.org/10.1016/S0065-2687(08)60052-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webster, S., A. R. Brown, D. R. Cameron, and C. P. Jones, 2003: Improvements to the representation of orography in the Met Office Unified Model. Quart. J. Roy. Meteor. Soc., 129, 19892010, https://doi.org/10.1256/qj.02.133.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, D. L., and S. D. Eckermann, 2008: Global gravity wave variances from Aura MLS: Characteristics and interpretation. J. Atmos. Sci., 65, 36953718, https://doi.org/10.1175/2008JAS2489.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, X., J. J. Song, Y. Wang, and M. Xue, 2017a: Quantifying the effect of horizontal propagation of three-dimensional mountain waves on the wave momentum flux using Gaussian beam approximation. J. Atmos. Sci., 74, 17831798, https://doi.org/10.1175/JAS-D-16-0275.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, X., Y. Wang, M. Xue, and K. Zhu, 2017b: Impacts of horizontal propagation of orographic gravity waves on the wave drag in the stratosphere and lower mesosphere. J. Geophys. Res. Atmos., 122, 11 30111 312, https://doi.org/10.1002/2017JD027528.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, X., Y. Tang, Y. Wang, and M. Xue, 2018: Directional absorption of mountain waves and its influence on the wave momentum transport in the Northern Hemisphere. J. Geophys. Res. Atmos., 123, 26402654, https://doi.org/10.1002/2017JD027968.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 259 0 0
Full Text Views 361 96 3
PDF Downloads 260 74 3