Idealized Large-Eddy Simulations of Stratocumulus Advecting over Cold Water. Part I: Boundary Layer Decoupling

Youtong Zheng aEarth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, Maryland

Search for other papers by Youtong Zheng in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-5961-7617
,
Haipeng Zhang aEarth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, Maryland

Search for other papers by Haipeng Zhang in
Current site
Google Scholar
PubMed
Close
,
Daniel Rosenfeld bHebrew University of Jerusalem, Jerusalem, Israel

Search for other papers by Daniel Rosenfeld in
Current site
Google Scholar
PubMed
Close
,
Seoung-Soo Lee aEarth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, Maryland

Search for other papers by Seoung-Soo Lee in
Current site
Google Scholar
PubMed
Close
,
Tianning Su aEarth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, Maryland

Search for other papers by Tianning Su in
Current site
Google Scholar
PubMed
Close
, and
Zhanqing Li aEarth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, Maryland

Search for other papers by Zhanqing Li in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

We explore the decoupling physics of a stratocumulus-topped boundary layer (STBL) moving over cooler water, a situation mimicking warm-air advection (WADV). We simulate an initially well-mixed STBL over a doubly periodic domain with the sea surface temperature decreasing linearly over time using the System for Atmospheric Modeling large-eddy model. Due to the surface cooling, the STBL becomes increasingly stably stratified, manifested as a near-surface temperature inversion topped by a well-mixed cloud-containing layer. Unlike the stably stratified STBL in cold-air advection (CADV) that is characterized by cumulus coupling, the stratocumulus deck in the WADV is unambiguously decoupled from the sea surface, manifested as weakly negative buoyancy flux throughout the subcloud layer. Without the influxes of buoyancy from the surface, the convective circulation in the well-mixed cloud-containing layer is driven by cloud-top radiative cooling. In such a regime, the downdrafts propel the circulation, in contrast to that in CADV regime for which the cumulus updrafts play a more determinant role. Such a contrast in convection regime explains the difference in many aspects of the STBLs including the entrainment rate, cloud homogeneity, vertical exchanges of heat and moisture, and lifetime of the stratocumulus deck, with the last being subject to a more thorough investigation in Part II. Finally, we investigate under what conditions a secondary stratus near the surface (or fog) can form in the WADV. We found that weaker subsidence favors the formation of fog whereas a more rapid surface cooling rate does not.

Significant Statement

The low-lying blanketlike clouds, called stratocumulus (Sc), reflect much incoming sunlight, substantially modulating Earth’s temperature. While much is known about how the Sc evolves when it moves over warmer water, few studies examine the opposite situation of Sc moving over colder water. We used a high-resolution numerical model to simulate such a case. When moving over cold water, the Sc becomes unambiguously decoupled from the water surface, distinctive from its warm counterpart in which the Sc interacts with the water surface via intermittent cauliflower-like clouds called cumulus clouds. Such decoupling influences many aspects of the Sc–sea surface system, which combine to alter the ability of the Sc to reflect sunlight, thereby influencing the climate. This work laid the foundation for future work that quantifies the contribution of such a decoupled Sc regime to Earth’s radiative budget and climate change.

Zheng’s current affiliations: Program in Atmospheric and Oceanic Sciences, Princeton University, and NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Youtong Zheng, yz1799@princeton.edu

Abstract

We explore the decoupling physics of a stratocumulus-topped boundary layer (STBL) moving over cooler water, a situation mimicking warm-air advection (WADV). We simulate an initially well-mixed STBL over a doubly periodic domain with the sea surface temperature decreasing linearly over time using the System for Atmospheric Modeling large-eddy model. Due to the surface cooling, the STBL becomes increasingly stably stratified, manifested as a near-surface temperature inversion topped by a well-mixed cloud-containing layer. Unlike the stably stratified STBL in cold-air advection (CADV) that is characterized by cumulus coupling, the stratocumulus deck in the WADV is unambiguously decoupled from the sea surface, manifested as weakly negative buoyancy flux throughout the subcloud layer. Without the influxes of buoyancy from the surface, the convective circulation in the well-mixed cloud-containing layer is driven by cloud-top radiative cooling. In such a regime, the downdrafts propel the circulation, in contrast to that in CADV regime for which the cumulus updrafts play a more determinant role. Such a contrast in convection regime explains the difference in many aspects of the STBLs including the entrainment rate, cloud homogeneity, vertical exchanges of heat and moisture, and lifetime of the stratocumulus deck, with the last being subject to a more thorough investigation in Part II. Finally, we investigate under what conditions a secondary stratus near the surface (or fog) can form in the WADV. We found that weaker subsidence favors the formation of fog whereas a more rapid surface cooling rate does not.

Significant Statement

The low-lying blanketlike clouds, called stratocumulus (Sc), reflect much incoming sunlight, substantially modulating Earth’s temperature. While much is known about how the Sc evolves when it moves over warmer water, few studies examine the opposite situation of Sc moving over colder water. We used a high-resolution numerical model to simulate such a case. When moving over cold water, the Sc becomes unambiguously decoupled from the water surface, distinctive from its warm counterpart in which the Sc interacts with the water surface via intermittent cauliflower-like clouds called cumulus clouds. Such decoupling influences many aspects of the Sc–sea surface system, which combine to alter the ability of the Sc to reflect sunlight, thereby influencing the climate. This work laid the foundation for future work that quantifies the contribution of such a decoupled Sc regime to Earth’s radiative budget and climate change.

Zheng’s current affiliations: Program in Atmospheric and Oceanic Sciences, Princeton University, and NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Youtong Zheng, yz1799@princeton.edu

Supplementary Materials

    • Supplemental Materials (ZIP 5.72 MB)
Save
  • Agee, E. M., 1987: Mesoscale cellular convection over the oceans. Dyn. Atmos. Oceans, 10, 317341, https://doi.org/10.1016/0377-0265(87)90023-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Albrecht, B. A., C. S. Bretherton, D. Johnson, W. H. Schubert, and A. S. Frisch, 1995: The Atlantic Stratocumulus Transition Experiment—ASTEX. Bull. Amer. Meteor. Soc., 76, 889904, https://doi.org/10.1175/1520-0477(1995)076<0889:TASTE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bjerknes, J., 1938: Saturated-adiabatic ascent of air through dry-adiabatically descending environment. Quart. J. Roy. Meteor. Soc., 64, 32530.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., 1997: Convection in stratocumulus-topped atmospheric boundary layers. The Physics and Parameterization of Moist Atmospheric Convection, Springer, 127142.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., and M. C. Wyant, 1997: Moisture transport, lower-tropospheric stability, and decoupling of cloud-topped boundary layers. J. Atmos. Sci., 54, 148167, https://doi.org/10.1175/1520-0469(1997)054<0148:MTLTSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., and P. N. Blossey, 2014: Low cloud reduction in a greenhouse-warmed climate: Results from Lagrangian LES of a subtropical marine cloudiness transition. J. Adv. Model. Earth Syst., 6, 91114, https://doi.org/10.1002/2013MS000250.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., J. Uchida, and P. N. Blossey, 2010: Slow manifolds and multiple equilibria in stratocumulus-capped boundary layers. J. Adv. Model. Earth Syst., 2, 14, https://doi.org/10.3894/JAMES.2010.2.14.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Caldwell, P., and C. S. Bretherton, 2009: Response of a subtropical stratocumulus-capped mixed layer to climate and aerosol changes. J. Climate, 22, 2038, https://doi.org/10.1175/2008JCLI1967.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Caldwell, P., C. S. Bretherton, and R. Wood, 2005: Mixed-layer budget analysis of the diurnal cycle of entrainment in southeast Pacific stratocumulus. J. Atmos. Sci., 62, 37753791, https://doi.org/10.1175/JAS3561.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Edwards, J. M., 2009: Radiative processes in the stable boundary layer: Part I. Radiative aspects. Bound.-Layer Meteor., 131, 105126, https://doi.org/10.1007/s10546-009-9364-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fletcher, J. K., S. Mason, and C. Jakob, 2016: A climatology of clouds in marine cold air outbreaks in both hemispheres. J. Climate, 29, 66776692, https://doi.org/10.1175/JCLI-D-15-0783.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goren, T., D. Rosenfeld, O. Sourdeval, and J. Quaas, 2018: Satellite observations of precipitating marine stratocumulus show greater cloud fraction for decoupled clouds in comparison to coupled clouds. Geophys. Res. Lett., 45, 51265134, https://doi.org/10.1029/2018GL078122.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hahn, C. J., and S. G. Warren, 2007: A gridded climatology of clouds over land (1971–96) and ocean (1954–97) from surface observations worldwide. CDIAC Rep. ORNL/CDIAC-153, 71 pp., https://doi.org/10.3334/CDIAC/cli.ndp026e.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., M. E. Ockert-Bell, and M. L. Michelsen, 1992: The effect of cloud type on Earth’s energy balance: Global analysis. J. Climate, 5, 12811304, https://doi.org/10.1175/1520-0442(1992)005<1281:TEOCTO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 1973: An introduction to dynamic meteorology. Amer. J. Phys., 41, 752754, https://doi.org/10.1119/1.1987371.

  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, https://doi.org/10.1029/2008JD009944.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, C., C. Bretherton, and P. Blossey, 2014: Fast stratocumulus time scale in mixed layer model and large eddy simulation. J. Adv. Model. Earth Syst., 6, 206222, https://doi.org/10.1002/2013MS000289.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M., and Y. Kogan, 2000: A new cloud physics parameterization in a large-eddy simulation model of marine stratocumulus. Mon. Wea. Rev., 128, 229243, https://doi.org/10.1175/1520-0493(2000)128<0229:ANCPPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M., and D. A. Randall, 2003: Cloud resolving modeling of the ARM summer 1997 IOP: Model formulation, results, uncertainties, and sensitivities. J. Atmos. Sci., 60, 607625, https://doi.org/10.1175/1520-0469(2003)060<0607:CRMOTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, S. A., A. Hall, J. R. Norris, and R. Pincus, 2017: Low-cloud feedbacks from cloud-controlling factors: A review. Shallow Clouds, Water Vapor, Circulation, and Climate Sensitivity, Springer, 135157.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lilly, D. K., 1968: Models of cloud-topped mixed layers under a strong inversion. Quart. J. Roy. Meteor. Soc., 94, 292309, https://doi.org/10.1002/qj.49709440106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahrt, L., 2014: Stably stratified atmospheric boundary layers. Annu. Rev. Fluid Mech., 46, 2345, https://doi.org/10.1146/annurev-fluid-010313-141354.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mellado, J. P., 2017: Cloud-top entrainment in stratocumulus clouds. Annu. Rev. Fluid Mech., 49, 145169, https://doi.org/10.1146/annurev-fluid-010816-060231.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mellado, J. P., C. S. Bretherton, B. Stevens, and M. C. Wyant, 2018: DNS and LES for simulating stratocumulus: Better together. J. Adv. Model. Earth Syst., 10, 14211438, https://doi.org/10.1029/2018MS001312.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, M. A., and B. A. Albrecht, 1995: Surface-based observations of mesoscale cumulus–stratocumulus interaction during ASTEX. J. Atmos. Sci., 52, 28092826, https://doi.org/10.1175/1520-0469(1995)052<2809:SBOOMC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moeng, C.-H., and R. Rotunno, 1990: Vertical-velocity skewness in the buoyancy-driven boundary layer. J. Atmos. Sci., 47, 11491162, https://doi.org/10.1175/1520-0469(1990)047<1149:VVSITB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Myers, T. A., and J. R. Norris, 2015: On the relationships between subtropical clouds and meteorology in observations and CMIP3 and CMIP5 models. J. Climate, 28, 29452967, https://doi.org/10.1175/JCLI-D-14-00475.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Naud, C. M., J. F. Booth, A. Protat, K. Lamer, R. Marchand, and G. M. McFarquhar, 2020: Boundary layer cloud controlling factors in the midlatitudes: Southern versus northern ocean clouds. 2020 AGU Fall Meeting, Virtual, Amer. Geophys. Union, Abstract A195-02.

    • Search Google Scholar
    • Export Citation
  • Nicholls, S., 1984: The dynamics of stratocumulus: Aircraft observations and comparisons with a mixed layer model. Quart. J. Roy. Meteor. Soc., 110, 783820, https://doi.org/10.1002/qj.49711046603.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nicholls, S., and J. Leighton, 1986: An observational study of the structure of stratiform cloud sheets: Part I. Structure. Quart. J. Roy. Meteor. Soc., 112, 431460, https://doi.org/10.1002/qj.49711247209.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Norris, J. R., and S. A. Klein, 2000: Low cloud type over the ocean from surface observations. Part III: Relationship to vertical motion and the regional surface synoptic environment. J. Climate, 13, 245256, https://doi.org/10.1175/1520-0442(2000)013<0245:LCTOTO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Norris, J. R., and S. F. Iacobellis, 2005: North Pacific cloud feedbacks inferred from synoptic-scale dynamic and thermodynamic relationships. J. Climate, 18, 48624878, https://doi.org/10.1175/JCLI3558.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petty, G. W., 2006: A First Course in Atmospheric Radiation. 2nd ed. Sundog Publishing, 459 pp.

  • Romps, D. M., 2017: Exact expression for the lifting condensation level. J. Atmos. Sci., 74, 38913900, https://doi.org/10.1175/JAS-D-17-0102.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sandu, I., and B. Stevens, 2011: On the factors modulating the stratocumulus to cumulus transitions. J. Atmos. Sci., 68, 18651881, https://doi.org/10.1175/2011JAS3614.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schubert, W. H., J. S. Wakefield, E. J. Steiner, and S. K. Cox, 1979a: Marine stratocumulus convection. Part I: Governing equations and horizontally homogeneous solutions. J. Atmos. Sci., 36, 12861307, https://doi.org/10.1175/1520-0469(1979)036<1286:MSCPIG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schubert, W. H., J. S. Wakefield, E. J. Steiner, and S. K. Cox, 1979b: Marine stratocumulus convection. Part II: Horizontally inhomogeneous solutions. J. Atmos. Sci., 36, 13081324, https://doi.org/10.1175/1520-0469(1979)036<1308:MSCPIH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scott, R. C., T. A. Myers, J. R. Norris, M. D. Zelinka, S. A. Klein, M. Sun, and D. R. Doelling, 2020: Observed sensitivity of low cloud radiative effects to meteorological perturbations over the global oceans. J. Climate, 33, 77177734, https://doi.org/10.1175/JCLI-D-19-1028.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smolarkiewicz, P. K., and W. W. Grabowski, 1990: The multidimensional positive definite advection transport algorithm: Nonoscillatory option. J. Comput. Phys., 86, 355375, https://doi.org/10.1016/0021-9991(90)90105-A.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevens, B., 2006: Bulk boundary-layer concepts for simplified models of tropical dynamics. Theor. Comput. Fluid Dyn., 20, 279304, https://doi.org/10.1007/s00162-006-0032-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevens, B., W. R. Cotton, G. Feingold, and C.-H. Moeng, 1998: Large-eddy simulations of strongly precipitating, shallow, stratocumulus-topped boundary layers. J. Atmos. Sci., 55, 36163638, https://doi.org/10.1175/1520-0469(1998)055<3616:LESOSP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uchida, J., C. Bretherton, and P. Blossey, 2010: The sensitivity of stratocumulus-capped mixed layers to cloud droplet concentration: Do LES and mixed-layer models agree?. Atmos. Chem. Phys., 10, 40974109, https://doi.org/10.5194/acp-10-4097-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van der Dussen, J., and Coauthors, 2013: The GASS/EUCLIPSE model intercomparison of the stratocumulus transition as observed during ASTEX: LES results. J. Adv. Model. Earth Syst., 5, 483499, https://doi.org/10.1002/jame.20033.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wakefield, J. S., and W. H. Schubert, 1981: Mixed-layer mode simulation of eastern North Pacific stratocumulus. Mon. Wea. Rev., 109, 19521968, https://doi.org/10.1175/1520-0493(1981)109<1952:MLMSOE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wall, C. J., D. L. Hartmann, and P.-L. Ma, 2017: Instantaneous linkages between clouds and large-scale meteorology over the Southern Ocean in observations and a climate model. J. Climate, 30, 94559474, https://doi.org/10.1175/JCLI-D-17-0156.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, R., 2007: Cancellation of aerosol indirect effects in marine stratocumulus through cloud thinning. J. Atmos. Sci., 64, 26572669, https://doi.org/10.1175/JAS3942.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, R., 2012: Stratocumulus clouds. Mon. Wea. Rev., 140, 23732423, https://doi.org/10.1175/MWR-D-11-00121.1.

  • Wyngaard, J., 1987: A physical mechanism for the asymmetry in top-down and bottom-up diffusion. J. Atmos. Sci., 44, 10831087, https://doi.org/10.1175/1520-0469(1987)044<1083:APMFTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yamaguchi, T., and D. A. Randall, 2008: Large-eddy simulation of evaporatively driven entrainment in cloud-topped mixed layers. J. Atmos. Sci., 65, 14811504, https://doi.org/10.1175/2007JAS2438.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., B. Stevens, and M. Ghil, 2005: On the diurnal cycle and susceptibility to aerosol concentration in a stratocumulus-topped mixed layer. Quart. J. Roy. Meteor. Soc., 131, 15671583, https://doi.org/10.1256/qj.04.103.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zheng, Y., and Z. Li, 2019: Episodes of warm-air advection causing cloud-surface decoupling during the MARCUS. J. Geophys. Res. Atmos., 124, 12 22712 243, https://doi.org/10.1029/2019JD030835.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zheng, Y., D. Rosenfeld, and, Z. Li, 2018: The relationships between cloud top radiative cooling rates, surface latent heat fluxes, and cloud-base heights in marine stratocumulus. J. Geophys. Res. Atmos., 123, 11 67811 690, https://doi.org/10.1029/2018JD028579.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zheng, Y., D. Rosenfeld, and Z. Li, 2020: A more general paradigm for understanding the decoupling of stratocumulus-topped boundary layers: The importance of horizontal temperature advection. Geophys. Res. Lett., 47, e2020GL087697, https://doi.org/10.1029/2020GL087697.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zheng, Y., H. Zhang, and Z. Li, 2021: Role of surface latent heat flux in shallow cloud transitions: A mechanism-denial LES study. J. Atmos. Sci., 78, 27092723, https://doi.org/10.1175/JAS-D-20-0381.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 355 0 0
Full Text Views 904 656 218
PDF Downloads 351 102 11