Easterly Waves in the East Pacific during the OTREC 2019 Field Campaign

Lidia Huaman aDepartment of Atmospheric Sciences, Texas A&M University, College Station, Texas

Search for other papers by Lidia Huaman in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-9812-9587
,
Eric D. Maloney bDepartment of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by Eric D. Maloney in
Current site
Google Scholar
PubMed
Close
,
Courtney Schumacher aDepartment of Atmospheric Sciences, Texas A&M University, College Station, Texas

Search for other papers by Courtney Schumacher in
Current site
Google Scholar
PubMed
Close
, and
George N. Kiladis cPhysical Sciences Division, NOAA/Earth System Research Laboratory, Boulder, Colorado

Search for other papers by George N. Kiladis in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Easterly waves (EWs) are off-equatorial tropical synoptic disturbances with a westward phase speed between 11 and 14 m s−1. Over the east Pacific in boreal summer, the combination of EWs and other synoptic disturbances, plus local mechanisms associated with sea surface temperature (SST) gradients, define the climatological structure of the intertropical convergence zone (ITCZ). The east Pacific ITCZ has both deep and shallow convection that is linked to deep and shallow meridional circulations, respectively. The deep convection is located around 9°N over warm SSTs. The shallow convection is located around 6°N and is driven by the meridional SST gradient south of the ITCZ. This study aims to document the interaction between east Pacific EWs and the deep and shallow meridional circulations during the Organization of Tropical East Pacific Convection (OTREC) field campaign in 2019 using field campaign observations, ERA5, and satellite precipitation. We identified three EWs during the OTREC period using precipitation and dynamical fields. Composite analysis shows that the convectively active part of the EW enhances ITCZ deep convection and is associated with an export of column-integrated moist static energy (MSE) by vertical advection. The subsequent convectively suppressed, anticyclonic part of the EW produces an increase of moisture and column-integrated MSE by horizontal advection that likely enhances shallow convection and the shallow overturning flow at 850 hPa over the southern part of the ITCZ. Therefore, EWs appear to strongly modulate shallow and deep circulations in the east Pacific ITCZ.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Lidia Huaman, lidiana.huaman@tamu.edu

Abstract

Easterly waves (EWs) are off-equatorial tropical synoptic disturbances with a westward phase speed between 11 and 14 m s−1. Over the east Pacific in boreal summer, the combination of EWs and other synoptic disturbances, plus local mechanisms associated with sea surface temperature (SST) gradients, define the climatological structure of the intertropical convergence zone (ITCZ). The east Pacific ITCZ has both deep and shallow convection that is linked to deep and shallow meridional circulations, respectively. The deep convection is located around 9°N over warm SSTs. The shallow convection is located around 6°N and is driven by the meridional SST gradient south of the ITCZ. This study aims to document the interaction between east Pacific EWs and the deep and shallow meridional circulations during the Organization of Tropical East Pacific Convection (OTREC) field campaign in 2019 using field campaign observations, ERA5, and satellite precipitation. We identified three EWs during the OTREC period using precipitation and dynamical fields. Composite analysis shows that the convectively active part of the EW enhances ITCZ deep convection and is associated with an export of column-integrated moist static energy (MSE) by vertical advection. The subsequent convectively suppressed, anticyclonic part of the EW produces an increase of moisture and column-integrated MSE by horizontal advection that likely enhances shallow convection and the shallow overturning flow at 850 hPa over the southern part of the ITCZ. Therefore, EWs appear to strongly modulate shallow and deep circulations in the east Pacific ITCZ.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Lidia Huaman, lidiana.huaman@tamu.edu

Supplementary Materials

    • Supplemental Materials (PDF 1.83 MB)
Save
  • Back, L. E., and C. S. Bretherton, 2006: Geographic variability in the export of moist static energy and vertical motion profiles in the tropical Pacific. Geophys. Res. Lett., 33, L17810, https://doi.org/10.1029/2006GL026672.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Back, L. E., and C. S. Bretherton, 2009: On the relationship between SST gradients, boundary layer winds, and convergence over the tropical oceans. J. Climate, 22, 41824196, https://doi.org/10.1175/2009JCLI2392.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berry, G., C. Thorncroft, and T. Hewson, 2007: African easterly waves during 2004—Analysis using objective techniques. Mon. Wea. Rev., 135, 12511267, https://doi.org/10.1175/MWR3343.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dominguez, C., J. M. Done, and C. L. Bruyère, 2020: Easterly wave contributions to seasonal rainfall over the tropical Americas in observations and a regional climate model. Climate Dyn., 54, 191209, https://doi.org/10.1007/s00382-019-04996-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frank, W. M., and P. E. Roundy, 2006: The role of tropical waves in tropical cyclogenesis. Mon. Wea. Rev., 134, 23972417, https://doi.org/10.1175/MWR3204.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fuchs-Stone, Ž., D. J. Raymond, and S. Sentić, 2020: OTREC2019: Convection over the east Pacific and southwest Caribbean. Geophys. Res. Lett., 47, e2020GL087564, https://doi.org/10.1029/2020GL087564.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gomes, H. B., T. Ambrizzi, B. F. Pontes da Silva, K. Hodges, P. L. Silva Dias, D. L. Herdies, M. C. L. Silva, and H. B. Gomes, 2019: Climatology of easterly wave disturbances over the tropical South Atlantic. Climate Dyn., 53, 13931411, https://doi.org/10.1007/s00382-019-04667-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Handlos, Z. J., and L. E. Back, 2014: Estimating vertical motion profile shape within tropical weather states over the oceans. J. Climate, 27, 76677686, https://doi.org/10.1175/JCLI-D-13-00602.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and D. Dee, 2016: ERA5 reanalysis is in production. ECMWF Newsletter, No. 147, ECMWF, Reading, United Kingdom, 7, http://www.ecmwf.int/sites/default/files/elibrary/2016/16299-newsletter-no147-spring-2016.pdf.

    • Search Google Scholar
    • Export Citation
  • Hodges, K., 1995: Feature tracking on the unit sphere. Mon. Wea. Rev., 123, 34583465, https://doi.org/10.1175/1520-0493(1995)123<3458:FTOTUS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hodges, K., 1999: Adaptive constraints for feature tracking. Mon. Wea. Rev., 127, 13621373, https://doi.org/10.1175/1520-0493(1999)127<1362:ACFFT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holloway, C. E., and J. D. Neelin, 2009: Moisture vertical structure, column water vapor, and tropical deep convection. J. Atmos. Sci., 66, 16651683, https://doi.org/10.1175/2008JAS2806.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hou, A. Y., and Coauthors, 2014: The Global Precipitation Measurement mission. Bull. Amer. Meteor. Soc., 95, 701722, https://doi.org/10.1175/BAMS-D-13-00164.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huaman, L., and K. Takahashi, 2016: The vertical structure of the eastern Pacific ITCZs and associated circulation using the TRMM Precipitation Radar and in situ data. Geophys. Res. Lett., 43, 82308239, https://doi.org/10.1002/2016GL068835.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huaman, L., and C. Schumacher, 2018: Assessing the vertical latent heating structure of the east Pacific ITCZ using the CloudSat CPR and TRMM PR. J. Climate, 31, 25632577, https://doi.org/10.1175/JCLI-D-17-0590.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huaman, L., C. Schumacher, and G. N. Kiladis, 2020: Eastward propagating disturbances in the tropical Pacific. Mon. Wea. Rev., 148, 37133728, https://doi.org/10.1175/MWR-D-20-0029.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., D. T. Bolvin, D. Braithwaite, K. Hsu, R. Joyce, P. Xie, and S.-H. Yoo, 2015: NASA Global Precipitation Measurement (GPM) Integrated Multi-Satellite Retrievals for GPM (IMERG). NASA Algorithm Theoretical Basis Doc., version 4, 26 pp.

    • Search Google Scholar
    • Export Citation
  • Inoue, K., and L. Back, 2015: Column-integrated moist static energy budget analysis on various time scales during TOGA COARE. J. Atmos. Sci., 72, 18561871, https://doi.org/10.1175/JAS-D-14-0249.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janiga, M. A., and C. D. Thorncroft, 2013: Regional differences in the kinematic and thermodynamic structure of African easterly waves. Quart. J. Roy. Meteor. Soc., 139, 15981614, https://doi.org/10.1002/qj.2047.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jaramillo, L., G. Poveda, and J. F. Mejía, 2017: Mesoscale convective systems and other precipitation features over the tropical Americas and surrounding seas as seen by TRMM. Int. J. Climatol., 37, 380397, https://doi.org/10.1002/joc.5009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., C. D. Thorncroft, and N. M. Hall, 2006: Three-dimensional structure and dynamics of African easterly waves. Part I: Observations. J. Atmos. Sci., 63, 22122230, https://doi.org/10.1175/JAS3741.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., M. C. Wheeler, P. T. Haertel, K. H. Straub, and P. E. Roundy, 2009: Convectively coupled equatorial waves. Rev. Geophys., 47, RG2003, https://doi.org/10.1029/2008RG000266.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., and S. Nigam, 1987: On the role of sea surface temperature gradients in forcing low-level winds and convergence in the tropics. J. Atmos. Sci., 44, 24182436, https://doi.org/10.1175/1520-0469(1987)044<2418:OTROSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martin, E. R., and C. Schumacher, 2011: Modulation of Caribbean precipitation by the Madden–Julian oscillation. J. Climate, 24, 813824, https://doi.org/10.1175/2010JCLI3773.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Masunaga, H., and Z. J. Luo, 2016: Convective and large-scale mass flux profiles over tropical oceans determined from synergistic analysis of a suite of satellite observations. J. Geophys. Res. Atmos., 121, 79587974, https://doi.org/10.1002/2016JD024753.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molinari, J., and D. Vollaro, 2000: Planetary-and synoptic-scale influences on eastern Pacific tropical cyclogenesis. Mon. Wea. Rev., 128, 32963307, https://doi.org/10.1175/1520-0493(2000)128<3296:PASSIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molinari, J., D. Knight, M. Dickinson, D. Vollaro, and S. Skubis, 1997: Potential vorticity, easterly waves, and eastern Pacific tropical cyclogenesis. Mon. Wea. Rev., 125, 26992708, https://doi.org/10.1175/1520-0493(1997)125<2699:PVEWAE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., and E. D. Rappin, 2008: Increased sensitivity of tropical cyclogenesis to wind shear in higher SST environments. Geophys. Res. Lett., 35, L14805, https://doi.org/10.1029/2008GL034147.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., C. Zhang, and S. Chen, 2007: Dynamics of the shallow meridional circulation around intertropical convergence zones. J. Atmos. Sci., 64, 22622285, https://doi.org/10.1175/JAS3964.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., S. W. Powell, C. Zhang, and B. E. Mapes, 2010: Idealized simulations of the intertropical convergence zone and its multilevel flows. J. Atmos. Sci., 67, 40284053, https://doi.org/10.1175/2010JAS3417.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pasch, R. J., and Coauthors, 2009: Eastern North Pacific hurricane season of 2006. Mon. Wea. Rev., 137, 320, https://doi.org/10.1175/2008MWR2508.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petersen, W. A., R. Cifelli, D. J. Boccippio, S. A. Rutledge, and C. Fairall, 2003: Convection and easterly wave structures observed in the eastern Pacific warm pool during EPIC-2001. J. Atmos. Sci., 60, 17541773, https://doi.org/10.1175/1520-0469(2003)060<1754:CAEWSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poveda, G., L. Jaramillo, and L. F. Vallejo, 2014: Seasonal precipitation patterns along pathways of South America low-level jets and aerial rivers. Water Resour. Res., 50, 98118, https://doi.org/10.1002/2013WR014087.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rapp, A. D., A. G. Peterson, O. W. Frauenfeld, S. M. Quiring, and E. B. Roark, 2014: Climatology of storm characteristics in Costa Rica using the TRMM Precipitation Radar. J. Hydrometeor., 15, 26152633, https://doi.org/10.1175/JHM-D-13-0174.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rauber, R. M., S. M. Ellis, J. Vivekanandan, J. Stith, W.-C. Lee, G. M. McFarquhar, B. F. Jewett, and A. Janiszeski, 2017: Finescale structure of a snowstorm over the northeastern United States: A first look at high-resolution HIAPER Cloud Radar observations. Bull. Amer. Meteor. Soc., 98, 253269, https://doi.org/10.1175/BAMS-D-15-00180.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., C. López-Carrillo, and L. L. Cavazos, 1998: Case-studies of developing east Pacific easterly waves. Quart. J. Roy. Meteor. Soc., 124, 20052034, https://doi.org/10.1002/qj.49712455011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., S. Gjorgjievska, S. Sessions, and Z. Fuchs, 2014: Tropical cyclogenesis and mid-level vorticity. Aust. Meteor. Oceanogr. J., 64, 1125, https://doi.org/10.22499/2.6401.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reed, R. J., and E. E. Recker, 1971: Structure and properties of synoptic-scale wave disturbances in the equatorial western Pacific. J. Atmos. Sci., 28, 11171133, https://doi.org/10.1175/1520-0469(1971)028<1117:SAPOSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reed, R. J., and R. H. Johnson, 1974: The vorticity budget of synoptic-scale wave disturbances in the tropical western Pacific. J. Atmos. Sci., 31, 17841790, https://doi.org/10.1175/1520-0469(1974)031<1784:TVBOSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reed, R. J., D. C. Norquist, and E. E. Recker, 1977: The structure and properties of African wave disturbances as observed during phase III of GATE. Mon. Wea. Rev., 105, 317333, https://doi.org/10.1175/1520-0493(1977)105<0317:TSAPOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rennick, M. A., 1976: The generation of African waves. J. Atmos. Sci., 33, 19551969, https://doi.org/10.1175/1520-0469(1976)033<1955:TGOAW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riehl, H., 1954: Tropical Meteorology., McGraw-Hill, 392 pp.

  • Rydbeck, A. V., and E. D. Maloney, 2014: Energetics of east Pacific easterly waves during intraseasonal events. J. Climate, 27, 76037621, https://doi.org/10.1175/JCLI-D-14-00211.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rydbeck, A. V., and E. D. Maloney, 2015: On the convective coupling and moisture organization of east Pacific easterly waves. J. Atmos. Sci., 72, 38503870, https://doi.org/10.1175/JAS-D-15-0056.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rydbeck, A. V., E. D. Maloney, and G. J. Alaka Jr, 2017: In situ initiation of east Pacific easterly waves in a regional model. J. Atmos. Sci., 74, 333351, https://doi.org/10.1175/JAS-D-16-0124.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schumacher, C., R. A. Houze Jr., and I. Kraucunas, 2004: The tropical dynamical response to latent heating estimates derived from the TRMM Precipitation Radar. J. Atmos. Sci., 61, 13411358, https://doi.org/10.1175/1520-0469(2004)061<1341:TTDRTL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serra, Y. L., and R. A. Houze Jr, 2002: Observations of variability on synoptic timescales in the east Pacific ITCZ. J. Atmos. Sci., 59, 17231743, https://doi.org/10.1175/1520-0469(2002)059<1723:OOVOST>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serra, Y. L., G. N. Kiladis, and M. F. Cronin, 2008: Horizontal and vertical structure of easterly waves in the Pacific ITCZ. J. Atmos. Sci., 65, 12661284, https://doi.org/10.1175/2007JAS2341.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serra, Y. L., G. N. Kiladis, and K. I. Hodges, 2010: Tracking and mean structure of easterly waves over the Intra-Americas Sea. J. Climate, 23, 48234840, https://doi.org/10.1175/2010JCLI3223.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serra, Y. L., X. Jiang, B. Tian, J. Amador-Astua, E. D. Maloney, and G. N. Kiladis, 2014: Tropical intraseasonal modes of the atmosphere. Annu. Rev. Environ. Resour., 39, 189215, https://doi.org/10.1146/annurev-environ-020413-134219.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shapiro, L. J., 1986: The three-dimensional structure of synoptic-scale disturbances over the tropical Atlantic. Mon. Wea. Rev., 114, 18761891, https://doi.org/10.1175/1520-0493(1986)114<1876:TTDSOS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sherwood, S. C., P. Minnis, and M. McGill, 2004: Deep convective cloud-top heights and their thermodynamic control during CRYSTAL-FACE. J. Geophys. Res., 109, D20119, https://doi.org/10.1029/2004JD004811.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tai, K.-S., and Y. Ogura, 1987: An observational study of easterly waves over the eastern Pacific in the northern summer using FGGE data. J. Atmos. Sci., 44, 339361, https://doi.org/10.1175/1520-0469(1987)044<0339:AOSOEW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, R. M., S. W. Payne, E. E. Recker, and R. J. Reed, 1979: Structure and properties of synoptic-scale wave disturbances in the intertropical convergence zone of the eastern Atlantic. J. Atmos. Sci., 36, 5372, https://doi.org/10.1175/1520-0469(1979)036<0053:SAPOSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorncroft, C., and B. Hoskins, 1994: An idealized study of African easterly waves. I: A linear view. Quart. J. Roy. Meteor. Soc., 120, 953982, https://doi.org/10.1002/qj.49712051809.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toma, V. E., and P. J. Webster, 2010a: Oscillations of the intertropical convergence zone and the genesis of easterly waves. Part I: Diagnostics and theory. Climate Dyn., 34, 587604, https://doi.org/10.1007/s00382-009-0584-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toma, V. E., and P. J. Webster, 2010b: Oscillations of the intertropical convergence zone and the genesis of easterly waves. Part II: Numerical verification. Climate Dyn., 34, 605613, https://doi.org/10.1007/s00382-009-0585-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vömel, H., and Coauthors, 2021: High-resolution in situ observations of atmospheric thermodynamics using dropsondes during the Organization of Tropical East Pacific Convection (OTREC) field campaign. Earth Syst. Sci. Data, 13, 11071117, https://doi.org/10.5194/essd-13-1107-2021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whitaker, J. W., and E. D. Maloney, 2018: Influence of the Madden–Julian oscillation and Caribbean low-level jet on east Pacific easterly wave dynamics. J. Atmos. Sci., 75, 11211141, https://doi.org/10.1175/JAS-D-17-0250.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whitaker, J. W., and E. D. Maloney, 2020: Genesis of an east Pacific easterly wave from a Panama Bight MCS: A case study analysis from June 2012. J. Atmos. Sci., 77, 35673584, https://doi.org/10.1175/JAS-D-20-0032.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wolding, B. O., and E. D. Maloney, 2015: Objective diagnostics and the Madden–Julian oscillation. Part II: Application to moist static energy and moisture budgets. J. Climate, 28, 77867808, https://doi.org/10.1175/JCLI-D-14-00689.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wolding, B. O., E. D. Maloney, and M. Branson, 2016: Vertically resolved weak temperature gradient analysis of the Madden–Julian oscillation in SP-CESM. J. Adv. Model. Earth Syst., 8, 15861619, https://doi.org/10.1002/2016MS000724.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., H. Xu, W. S. Kessler, and M. Nonaka, 2005: Air–sea interaction over the eastern Pacific warm pool: Gap winds, thermocline dome, and atmospheric convection. J. Climate, 18, 520, https://doi.org/10.1175/JCLI-3249.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ye, B., A. D. Del Genio, and K. K. Lo, 1998: Cape variations in the current climate and in a climate change. J. Climate, 11, 19972015, https://doi.org/10.1175/1520-0442-11.8.1997.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yokoyama, C., and Y. N. Takayabu, 2012: Relationships between rain characteristics and environment. Part II: Atmospheric disturbances associated with shallow convection over the eastern tropical Pacific. Mon. Wea. Rev., 140, 28412859, https://doi.org/10.1175/MWR-D-11-00251.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zehnder, J. A., D. M. Powell, and D. L. Ropp, 1999: The interaction of easterly waves, orography, and the intertropical convergence zone in the genesis of eastern Pacific tropical cyclones. Mon. Wea. Rev., 127, 15661585, https://doi.org/10.1175/1520-0493(1999)127<1566:TIOEWO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, C., M. McGauley, and N. A. Bond, 2004: Shallow meridional circulation in the tropical eastern Pacific. J. Climate, 17, 133139, https://doi.org/10.1175/1520-0442(2004)017<0133:SMCITT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, C., D. S. Nolan, C. D. Thorncroft, and H. Nguyen, 2008: Shallow meridional circulations in the tropical atmosphere. J. Climate, 21, 34533470, https://doi.org/10.1175/2007JCLI1870.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zuidema, P., B. Mapes, J. Lin, C. Fairall, and G. Wick, 2006: The interaction of clouds and dry air in the eastern tropical Pacific. J. Climate, 19, 45314544, https://doi.org/10.1175/JCLI3836.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 392 0 0
Full Text Views 646 305 32
PDF Downloads 518 225 26