• Adams-Selin, R., and C. L. Ziegler, 2016: Forecasting hail using a one-dimensional hail growth model within WRF. Mon. Wea. Rev., 144, 49194939, https://doi.org/10.1175/MWR-D-16-0027.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bailey, I. H., and W. C. Macklin, 1968a: Heat transfer from artificial hailstones. Quart. J. Roy. Meteor. Soc., 94, 9398, https://doi.org/10.1002/qj.49709439910.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bailey, I. H., and W. C. Macklin, 1968b: The surface configuration and internal structure of artificial hailstones. Quart. J. Roy. Meteor. Soc., 94, 111, https://doi.org/10.1002/qj.49709439902.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barge, B. L., and G. A. Isaac, 1973: The shape of Alberta hailstones. J. Rech. Atmos., 11, 1120.

  • Beyer, W. H., 2002: CRC Standard Mathematical Tables. 31st ed. CRC Press, 912 pp.

  • Bringi, V. N., T. A. Seliga, and K. Aydin, 1984: Hail detection with a differential reflectivity radar. Science, 225, 11451147, https://doi.org/10.1126/science.225.4667.1145.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown-Giammanco, T., and I. Giammanco, 2018: An overview of the Insurance Institute for Business and Home Safety’s hail research program. 29th Conf. on Severe Local Storms, Stowe, VT, Amer. Meteor. Soc., 11.1, https://ams.confex.com/ams/29SLS/webprogram/Paper348661.html.

  • Browning, K. A., 1966: The lobe structure of giant hailstones. Quart. J. Roy. Meteor. Soc., 92, 114, https://doi.org/10.1002/qj.49709239102.

  • Browning, K. A., 1977: The structure and mechanisms of hailstorms. Hail: A Review of Hail Science and Hail Suppression, Meteor. Monogr., No. 38, 143.

    • Search Google Scholar
    • Export Citation
  • Browning, K. A., and G. B. Foote, 1976: Air-flow and hail growth in supercell storms and some implications for hail suppression. Quart. J. Roy. Meteor. Soc., 102, 499533, https://doi.org/10.1002/qj.49710243303.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and H. Morrison, 2012: Sensitivity of a simulated squall line to horizontal resolution and parameterization of microphysics. Mon. Wea. Rev., 140, 202225, https://doi.org/10.1175/MWR-D-11-00046.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, N.-S., 2009: Comparison of formulas for drag coefficient and settling velocity of spherical particles. Powder Technol., 189, 395398, https://doi.org/10.1016/j.powtec.2008.07.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chhabra, R. P., L. Agarwal, and N. K. Sinha, 1999: Drag on non-spherical particles: An evaluation of available methods. Powder Technol., 101, 288295, https://doi.org/10.1016/S0032-5910(98)00178-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dennis, E. J., and M. R. Kumjian, 2017: The impact of vertical wind shear on hail growth in simulated supercells. J. Atmos. Sci., 74, 641663, https://doi.org/10.1175/JAS-D-16-0066.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Efron, B., and R. J. Tibshirani, 1993: An Introduction to the Bootstrap. 1st ed. Chapman and Hall, 456 pp.

    • Crossref
    • Export Citation
  • Ganser, G. H., 1993: A rational approach to drag prediction of spherical and nonspherical particles. Powder Technol., 77, 143152, https://doi.org/10.1016/0032-5910(93)80051-B.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giammanco, I. M., T. M. Brown, R. G. Grant, D. L. Dewey, J. D. Hodel, and R. A. Stumpf, 2015: Evaluating the hardness characteristics of hail through compressive strength measurements. J. Atmos. Oceanic Technol., 32, 21002113, https://doi.org/10.1175/JTECH-D-15-0081.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giammanco, I. M., B. R. Maiden, H. E. Estes, and T. M. Brown-Giammanco, 2017: Using 3D laser scanning technology to create digital models of hailstones. Bull. Amer. Meteor. Soc., 98, 13411347, https://doi.org/10.1175/BAMS-D-15-00314.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., and R. Wright, 2014: Graupel and hail terminal velocities: Does a “supercritical” Reynolds number apply? J. Atmos. Sci., 71, 33923403, https://doi.org/10.1175/JAS-D-14-0034.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J. I. M. Giammanco, and R. Wright, 2014: Terminal velocities and kinetic energies of natural hailstones. Geophys. Res. Lett., 41, 86668672, https://doi.org/10.1002/2014GL062324.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., M. Szakáll, A. Jost I. Giammanco, and R. Wright, 2018: A comprehensive observational study of graupel and hail terminal velocity, mass flux, and kinetic energy. J. Atmos. Sci., 75, 38613885, https://doi.org/10.1175/JAS-D-18-0035.1; Corrigendum. 77, 405412, https://doi.org/10.1175/JAS-D-19-0185.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., and J. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129151.

  • Jiang, Z., M. R. Kumjian, R. S. Schrom, I. M. Giammanco, T. Brown-Giammanco, R. Maiden, and A. Heymsfield, 2019: Comparisons of electromagnetic scattering properties of real hailstones and spheroids. J. Appl. Meteor. Climatol., 58, 93112, https://doi.org/10.1175/JAMC-D-17-0344.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knight, C. A., and N. C. Knight, 1970: Lobe structures of hailstones. J. Atmos. Sci., 27, 667671, https://doi.org/10.1175/1520-0469(1970)027<0667:LSOH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knight, C. A., and N. C. Knight, 2005: Very large hailstones from Aurora, Nebraska. Bull. Amer. Meteor. Soc., 86, 17731782, https://doi.org/10.1175/BAMS-86-12-1773.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knight, N. C., 1986: Hailstone shape factor and its relation to radar interpretation of hail. J. Climate Appl. Meteor., 25, 19561958, https://doi.org/10.1175/1520-0450(1986)025<1956:HSFAIR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knight, N. C., and A. J. Heymsfield, 1983: Measurement and interpretation of hailstone density and terminal velocity. J. Atmos. Sci., 40, 15101516, https://doi.org/10.1175/1520-0469(1983)040<1510:MAIOHD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., 2018: Weather radars. Remote Sensing of Clouds and Precipitation, C. Andronache, Ed., Springer-Verlag, 15–63.

    • Crossref
    • Export Citation
  • Kumjian, M. R., and A. V. Ryzhkov, 2008: Polarimetric signatures in supercell thunderstorms. J. Appl. Meteor. Climatol., 47, 19401961, https://doi.org/10.1175/2007JAMC1874.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., and K. Lombardo, 2020: A hail growth trajectory model for exploring the environmental controls on hail size: Model physics and idealized tests. J. Atmos. Sci., 77, 27652791, https://doi.org/10.1175/JAS-D-20-0016.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., Z. J. Lebo, and A. A. Ward, 2019: Storms producing large accumulations of small hail. J. Appl. Meteor. Climatol., 58, 341364, https://doi.org/10.1175/JAMC-D-18-0073.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., and et al. , 2020: Gargantuan hail in Argentina. Bull. Amer. Meteor. Soc., 101, E1241E1258, https://doi.org/10.1175/BAMS-D-19-0012.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Macklin, W. C., 1963: Heat transfer from hailstones. Quart. J. Roy. Meteor. Soc., 89, 360369, https://doi.org/10.1002/qj.49708938107.

  • Macklin, W. C., 1977: Characteristics of natural hailstones and their interpretation. Hail: A Review of Hail Science and Hail Suppression, Meteor. Monogr., No. 38, 6591, https://doi.org/10.1007/978-1-935704-30-0_3.

    • Search Google Scholar
    • Export Citation
  • Matson, R. J., and A. W. Huggins, 1980: The direct measurement of the sizes, shapes, and kinematics of falling hailstones. J. Atmos. Sci., 37, 11071125, https://doi.org/10.1175/1520-0469(1980)037<1107:TDMOTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mirković, D., 2016: Computational Electromagnetics for Polarimetric Radar Scatterers: An Approach to Polarimetric Variable Modeling of Hydrometeors and Biota. 1st ed. Lambert Academic Publishing, 272 pp.

  • Morrison, H., and J. Milbrandt, 2011: Comparison of two-moment bulk microphysics schemes in idealized supercell thunderstorm simulations. Mon. Wea. Rev., 139, 11031130, https://doi.org/10.1175/2010MWR3433.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., and J. A. Milbrandt, 2015: Parameterization of microphysics based on the prediction of bulk ice particle properties. Part I: Scheme description and idealized tests. Mon. Wea. Rev., 72, 287311, https://doi.org/10.1175/JAS-D-14-0065.1.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., J. A. Curry, and V. I. Khvorostyanov, 2005: A new double-moment microphysics parameterization for application in cloud and climate models. Part I: Description. J. Atmos. Sci., 62, 16651677, https://doi.org/10.1175/JAS3446.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., G. Thompson, and V. Tatarskii, 2009: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes. Mon. Wea. Rev., 137, 9911007, https://doi.org/10.1175/2008MWR2556.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nelson, S. P., 1983: The influence of storm flow structure on hail growth. J. Atmos. Sci., 40, 19651983, https://doi.org/10.1175/1520-0469(1983)040<1965:TIOSFS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ortega, K. L., J. M. Krause, and A. V. Ryzhkov, 2016: Polarimetric radar characteristics of melting hail. Part III: Validation of the algorithm for hail size discrimination. J. Appl. Meteor. Climatol., 55, 829848, https://doi.org/10.1175/JAMC-D-15-0203.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, R. M., and A. J. Heymsfield, 1987: Melting and shedding of graupel and hail. Part I: Model physics. J. Atmos. Sci., 44, 27542763, https://doi.org/10.1175/1520-0469(1987)044<2754:MASOGA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roos, D. S., and A. E. Carte, 1973: The falling behavior of oblate and spiky hailstones. J. Rech. Atmos., 7, 3952.

  • Ryzhkov, A. V., M. Pinsky, A. Pokrovsky, and A. Khain, 2011: Polarimetric radar observation operator for a cloud model with spectral microphysics. J. Appl. Meteor. Climatol., 50, 873894, https://doi.org/10.1175/2010JAMC2363.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., M. R. Kumjian, S. M. Ganson, and A. P. Khain, 2013a: Polarimetric radar characteristics of melting hail. Part I: Theoretical simulations using spectral microphysical modeling. J. Appl. Meteor. Climatol., 52, 28492870, https://doi.org/10.1175/JAMC-D-13-073.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., M. R. Kumjian, S. M. Ganson, and P. Zhang, 2013b: Polarimetric radar characteristics of melting hail. Part II: Practical implications. J. Appl. Meteor. Climatol., 52, 28712886, https://doi.org/10.1175/JAMC-D-13-074.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schuepp, P. H., and R. List, 1969: Mass transfer of rough hailstone models in flows of various turbulence models. J. Appl. Meteor., 8, 254263, https://doi.org/10.1175/1520-0450(1969)008<0254:MTORHM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Theis, A., S. Borrmann, S. K. Mitra, A. J. Heymsfield, and M. Szakáll, 2020: A wind tunnel investigation into the aerodynamics of lobed hailstones. Atmosphere, 11 494, https://doi.org/10.3390/atmos11050494.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, G., R. M. Rasmussen, and K. Manning, 2004: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part I: Description and sensitivity analysis. Mon. Wea. Rev., 132, 519542, https://doi.org/10.1175/1520-0493(2004)132<0519:EFOWPU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wadell, H., 1935: Volume, shape and roundness of quartz particles. J. Geol., 43, 250280, https://doi.org/10.1086/624298.

  • Wakimoto, R. M., and V. N. Bringi, 1988: Dual-polarization observations of microbursts associated with intense convection: The 20 July storm during the MIST project. Mon. Wea. Rev., 116, 15211539, https://doi.org/10.1175/1520-0493(1988)116<1521:DPOOMA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, P. K., and C.-C. Chueh, 2020: A numerical study on the ventilation coefficients of falling lobed hailstones. Atmos. Res., 234, 104737, https://doi.org/10.1016/j.atmosres.2019.104737.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ziegler, C. L., P. S. Ray, and N. C. Knight, 1983: Hail growth in an Oklahoma multicell storm. J. Atmos. Sci., 40, 17681791, https://doi.org/10.1175/1520-0469(1983)040<1768:HGIAOM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 454 454 173
Full Text Views 77 77 14
PDF Downloads 97 97 19

Hailstone Shapes

View More View Less
  • 1 Department of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, Pennsylvania
  • | 2 Insurance Institute for Business and Home Safety, Richburg, South Carolina
© Get Permissions
Restricted access

Abstract

Hailstone growth results in a variety of hailstone shapes. These shapes hold implications for modeling of hail processes, hailstone fall behaviors including fall speeds, and remote sensing signatures of hail. This study is an in-depth analysis of natural hailstone shapes, using a large dataset of hailstones collected in the field over a 6-yr period. These data come from manual measurements with digital calipers and three-dimensional infrared laser scans. Hailstones tend to have an ellipsoidal geometry with minor-to-major axis ratios ranging from 0.4 to 0.8, and intermediate-to-major axis ratios between 0.8 and 1.0. These suggest hailstones are better represented as triaxial ellipsoids as opposed to spheres or spheroids, which is commonly assumed. The laser scans allow for precise sphericity measurements, for the first time. Hailstones become increasingly nonspherical with increasing maximum dimension, with a typical range of sphericity values of 0.57 to 0.99. These sphericity values were used to estimate the drag coefficient, which was found to have a typical range of 0.5 to over 0.9. Hailstone maximum dimension tends to be 20%–50% larger than the equivalent-volume spherical diameter. As a step toward understanding and quantifying hailstone shapes, this study may aid in better parameterizations of hail in models and remote sensing hail detection and sizing algorithms.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Matthew R. Kumjian, kumjian@psu.edu

Abstract

Hailstone growth results in a variety of hailstone shapes. These shapes hold implications for modeling of hail processes, hailstone fall behaviors including fall speeds, and remote sensing signatures of hail. This study is an in-depth analysis of natural hailstone shapes, using a large dataset of hailstones collected in the field over a 6-yr period. These data come from manual measurements with digital calipers and three-dimensional infrared laser scans. Hailstones tend to have an ellipsoidal geometry with minor-to-major axis ratios ranging from 0.4 to 0.8, and intermediate-to-major axis ratios between 0.8 and 1.0. These suggest hailstones are better represented as triaxial ellipsoids as opposed to spheres or spheroids, which is commonly assumed. The laser scans allow for precise sphericity measurements, for the first time. Hailstones become increasingly nonspherical with increasing maximum dimension, with a typical range of sphericity values of 0.57 to 0.99. These sphericity values were used to estimate the drag coefficient, which was found to have a typical range of 0.5 to over 0.9. Hailstone maximum dimension tends to be 20%–50% larger than the equivalent-volume spherical diameter. As a step toward understanding and quantifying hailstone shapes, this study may aid in better parameterizations of hail in models and remote sensing hail detection and sizing algorithms.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Matthew R. Kumjian, kumjian@psu.edu
Save