• Arnold, N. P., and D. A. Randall, 2015: Global-scale convective aggregation: Implications for the Madden-Julian oscillation. J. Adv. Model. Earth Syst., 7, 14991518, https://doi.org/10.1002/2015MS000498.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arnold, N. P., and W. M. Putman, 2018: Nonrotating convective self-aggregation in a limited area AGCM. J. Adv. Model. Earth Syst., 10, 10291046, https://doi.org/10.1002/2017MS001218.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barenblatt, G. I., 2003: Scaling. Cambridge Texts in Applied Mathematics, Cambridge University Press, 171 pp., https://doi.org/10.1017/CBO9780511814921.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Becker, T., B. Stevens, and C. Hohenegger, 2017: Imprint of the convective parameterization and sea-surface temperature on large-scale convective self-aggregation. J. Adv. Model. Earth Syst., 9, 14881505, https://doi.org/10.1002/2016MS000865.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beucler, T., and T. W. Cronin, 2016: Moisture-radiative cooling instability. J. Adv. Model. Earth Syst., 8, 16201640, https://doi.org/10.1002/2016MS000763.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boos, W. R., A. Fedorov, and L. Muir, 2016: Convective self-aggregation and tropical cyclogenesis under the hypohydrostatic rescaling. J. Atmos. Sci., 73, 525544, https://doi.org/10.1175/JAS-D-15-0049.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., 2003: Wave-CISK. Encyclopedia of Atmospheric Sciences, J. R. Holton, J. A. Pyle, and J. Curry, Eds., Elsevier, 1019–1021.

    • Crossref
    • Export Citation
  • Bretherton, C. S., P. N. Blossey, and M. Khairoutdinov, 2005: An energy-balance analysis of deep convective self-aggregation above uniform SST. J. Atmos. Sci., 62, 42734292, https://doi.org/10.1175/JAS3614.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charney, J. G., 1963: A note on large-scale motions in the tropics. J. Atmos. Sci., 20, 607609, https://doi.org/10.1175/1520-0469(1963)020<0607:ANOLSM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charney, J. G., and A. Eliassen, 1964: On the growth of the hurricane depression. J. Atmos. Sci., 21, 6875, https://doi.org/10.1175/1520-0469(1964)021<0068:OTGOTH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colin, M., S. Sherwood, O. Geoffroy, S. Bony, and D. Fuchs, 2019: Identifying the sources of convective memory in cloud-resolving simulations. J. Atmos. Sci., 76, 947962, https://doi.org/10.1175/JAS-D-18-0036.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Craig, G. C., and J. M. Mack, 2013: A coarsening model for self-organization of tropical convection. J. Geophys. Res. Atmos., 118, 87618769, https://doi.org/10.1002/jgrd.50674.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., J. D. Neelin, and C. S. Bretherton, 1994: On large-scale circulations in convecting atmospheres. Quart. J. Roy. Meteor. Soc., 120, 11111143, https://doi.org/10.1002/qj.49712051902.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., A. A. Wing, and E. M. Vincent, 2014: Radiative-convective instability. J. Adv. Model. Earth Syst., 6, 7590, https://doi.org/10.1002/2013MS000270.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fovell, R. G., 2005: Convective initiation ahead of the sea-breeze front. Mon. Wea. Rev., 133, 264278, https://doi.org/10.1175/MWR-2852.1.

  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462, https://doi.org/10.1002/qj.49710644905.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1982: Atmosphere-Ocean Dynamics. International Geophysics Series, Vol. 30, Academic Press, 662 pp.

  • Held, I. M., R. S. Hemler, V. Ramaswamy, I. M. Held, R. S. Hemler, and V. Ramaswamy, 1993: Radiative–convective equilibrium with explicit two-dimensional moist convection. J. Atmos. Sci., 50, 39093927, https://doi.org/10.1175/1520-0469(1993)050<3909:RCEWET>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hohenegger, C., and B. Stevens, 2013: Preconditioning deep convection with cumulus congestus. J. Atmos. Sci., 70, 448464 https://doi.org/10.1175/JAS-D-12-089.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holloway, C. E., and S. J. Woolnough, 2016: The sensitivity of convective aggregation to diabatic processes in idealized radiative-convective equilibrium simulations. J. Adv. Model. Earth Syst., 8, 166195, https://doi.org/10.1002/2015MS000511.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M. F., and K. Emanuel, 2018: Intraseasonal variability in a cloud-permitting near-global equatorial aquaplanet model. J. Atmos. Sci., 75, 43374355, https://doi.org/10.1175/JAS-D-18-0152.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuang, Z., 2008: A moisture-stratiform instability for convectively coupled waves. J. Atmos. Sci., 65, 834854, https://doi.org/10.1175/2007JAS2444.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuang, Z., 2012: Weakly forced mock Walker cells. J. Atmos. Sci., 69, 27592786, https://doi.org/10.1175/JAS-D-11-0307.1.

  • Lac, C., J.-P. Lafore, and J.-L. Redelsperger, 2002: Role of gravity waves in triggering deep convection during TOGA COARE. J. Atmos. Sci., 59, 12931316, https://doi.org/10.1175/1520-0469(2002)0591293:ROGWIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lane., T. P., and T. L. Clark, 2002: Gravity waves generated by the dry convective boundary layer: Two-dimensional scale selection and boundary-layer feedback. Quart. J. Roy. Meteor. Soc., 128, 15431570, https://doi.org/10.1002/qj.200212858308.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., 1974: Wave-CISK in the tropics. J. Atmos. Sci., 31, 156179, https://doi.org/10.1175/1520-0469(1974)031<0156:WCITT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., and S. Nigam, 1987: On the role of sea surface temperature gradients in forcing low-level winds and convergence in the tropics. J. Atmos. Sci., 44, 24182436, https://doi.org/10.1175/1520-0469(1987)0442418:OTROSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., 2000: Convective inhibition, subgrid-scale triggering energy, and stratiform instability in a toy tropical wave model. J. Atmos. Sci., 57, 15151535, https://doi.org/10.1175/1520-0469(2000)057<1515:CISSTE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan, 44, 2543, https://doi.org/10.2151/jmsj1965.44.1_25.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muller, C. J., and I. M. Held, 2012: Detailed investigation of the self-aggregation of convection in cloud-resolving simulations. J. Atmos. Sci., 69, 25512565, https://doi.org/10.1175/JAS-D-11-0257.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muller, C. J., and S. Bony, 2015: What favors convective aggregation and why? Geophys. Res. Lett., 42, 56265634, https://doi.org/10.1002/2015GL064260.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nabizadeh, E., P. Hassanzadeh, D. Yang, and E. A. Barnes, 2019: Size of the atmospheric blocking events: Scaling law and response to climate change. Geophys. Res. Lett., 46, 13 48813 499, https://doi.org/10.1029/2019GL084863.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Naumann, A. K., B. Stevens, C. Hohenegger, and J. P. Mellado, 2017: A conceptual model of a shallow circulation induced by prescribed low-level radiative cooling. J. Atmos. Sci., 74, 31293144, https://doi.org/10.1175/JAS-D-17-0030.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., 1989: On the interpretation of the Gill model, J. Atmos. Sci., 46, 24662468, https://doi.org/10.1175/1520-0469(1989)046<C2466:OTIOTG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Patrizio, C. R., and D. A. Randall, 2019: Sensitivity of convective self-aggregation to domain size. J. Adv. Model. Earth Syst., 11, 19952019, https://doi.org/10.1029/2019MS001672.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pritchard, M. S., and D. Yang, 2016: Response of the superparameterized Madden–Julian oscillation to extreme climate and basic state variation challenges a moisture mode view. J. Climate, 29, 19952019, https://doi.org/10.1175/JCLI-D-15-0790.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramírez-Reyes, A., and D. Yang, 2020: Spontaneous cyclogenesis without radiative and surface-flux feedbacks. EarthArXiv, https://doi.org/10.31223/osf.io/8fshw.

    • Crossref
    • Export Citation
  • Seidel, S. D., and D. Yang, 2020: The lightness of water vapor helps to stabilize tropical climate. Sci. Adv., 6, eaba1951, https://doi.org/10.1126/sciadv.aba1951.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., J. Nilsson, and L. M. Polvani, 2001: The weak temperature gradient approximation and balanced tropical moisture waves. J. Atmos. Sci., 58, 36503665, https://doi.org/10.1175/1520-0469(2001)058<3650:TWTGAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stephan, C., M. J. Alexander, and J. H. Richter, 2016: Characteristics of gravity waves from convection and implications for their parameterization in global circulation models. J. Atmos. Sci., 73, 27292742, https://doi.org/10.1175/JAS-D-15-0303.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, G., 1950: The formation of a blast wave by a very intense explosion. II. The atomic explosion of 1945. Proc. Roy. Soc. London, 201A, 175186, https://doi.org/10.1098/RSPA.1950.0050.

    • Search Google Scholar
    • Export Citation
  • Tompkins, A. M., 2001: Organization of tropical convection in low vertical wind shears: The role of water vapor. J. Atmos. Sci., 58, 529545, https://doi.org/10.1175/1520-0469(2001)058<0529:OOTCIL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uccelini, L. W., 1975: A case study of apparent gravity wave initiation of severe convective storms. Mon. Wea. Rev., 103, 497513, https://doi.org/10.1175/1520-0493(1975)103<0497:ACSOAG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., 2017: Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation. 2nd ed. Cambridge University Press, 860 pp., https://doi.org/10.1017/9781107588417.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Windmiller, J. M., and G. C. Craig, 2019: Universality in the spatial evolution of self-aggregation of tropical convection. J. Atmos. Sci., 76, 16771696, https://doi.org/10.1175/JAS-D-18-0129.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wing, A. A., and K. A. Emanuel, 2014: Physical mechanisms controlling self-aggregation of convection in idealized numerical modeling simulations. J. Adv. Model. Earth Syst., 6, 5974, https://doi.org/10.1002/2013MS000269.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wing, A. A., and T. W. Cronin, 2015: Self-aggregation of convection in long channel geometry. Quart. J. Roy. Meteor. Soc., 142, 115, https://doi.org/10.1002/qj.2628.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wing, A. A., S. J. Camargo, and A. H. Sobel, 2016: Role of radiative–convective feedbacks in spontaneous tropical cyclogenesis in idealized numerical simulations. J. Atmos. Sci., 73, 26332642, https://doi.org/10.1175/JAS-D-15-0380.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wing, A. A., K. Emanuel, C. E. Holloway, and C. Muller, 2017: Convective self-aggregation in numerical simulations: A review. Surv. Geophys., 38, 11731197, https://doi.org/10.1007/s10712-017-9408-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, Z., 2003: A shallow CISK, deep equilibrium mechanism for the interaction between large-scale convection and large-scale circulations in the tropics. J. Atmos. Sci., 60, 377392, https://doi.org/10.1175/1520-0469(2003)060<0377:ASCDEM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, D., 2018a: Boundary layer diabatic processes, the virtual effect, and convective self-aggregation. J. Adv. Model. Earth Syst., 10, 21632176, https://doi.org/10.1029/2017MS001261.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, D., 2018b: Boundary layer height and buoyancy determine the horizontal scale of convective self-aggregation. J. Atmos. Sci., 75, 469478, https://doi.org/10.1175/JAS-D-17-0150.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, D., 2019: Convective heating leads to self-aggregation by generating available potential energy. Geophys. Res. Lett., 46, 10 68710 696, https://doi.org/10.1029/2019GL083805.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, D., and A. P. Ingersoll, 2013: Triggered convection, gravity waves, and the MJO: A shallow-water model. J. Atmos. Sci., 70, 24762486, https://doi.org/10.1175/JAS-D-12-0255.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, D., and A. P. Ingersoll, 2014: A theory of the MJO horizontal scale. Geophys. Res. Lett., 41, 10591064, https://doi.org/10.1002/2013GL058542.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, D., and S. D. Seidel, 2020: The incredible lightness of water vapor. J. Climate, 33, 28412851, https://doi.org/10.1175/JCLI-D-19-0260.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yao, L., D. Yang, and Z.-M. Tan, 2020: A vertically resolved MSE framework highlights the role of the boundary layer in convective self-aggregation. arXiv, https://arxiv.org/abs/2008.10158.

All Time Past Year Past 30 Days
Abstract Views 525 390 12
Full Text Views 194 172 10
PDF Downloads 234 199 11

A Shallow-Water Model for Convective Self-Aggregation

View More View Less
  • 1 University of California, Davis, Davis, California
  • | 2 Lawrence Berkeley National Laboratory, Berkeley, California
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Randomly distributed convective storms can self-aggregate in the absence of large-scale forcings. Here we present a 1D shallow-water model to study the convective self-aggregation. This model simulates the dynamics of the planetary boundary layer and represents convection as a triggered process. Once triggered, convection lasts for finite time and occupies finite length. We show that the model can successfully simulate self-aggregation, and that the results are robust to a wide range of parameter values. In the simulations, convection excites gravity waves. The gravity waves then form a standing wave pattern, separating the domain into convectively active and inactive regions. We analyze the available potential energy (APE) budget and show that convection generates APE, providing energy for self-aggregation. By performing dimensional analysis, we develop a scaling theory for the size of convective aggregation, which is set by the gravity wave speed, damping time scale, and number density of convective storms. This paper provides a simple modeling framework to further study convective self-aggregation.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Da Yang, dayang@ucdavis.edu

Abstract

Randomly distributed convective storms can self-aggregate in the absence of large-scale forcings. Here we present a 1D shallow-water model to study the convective self-aggregation. This model simulates the dynamics of the planetary boundary layer and represents convection as a triggered process. Once triggered, convection lasts for finite time and occupies finite length. We show that the model can successfully simulate self-aggregation, and that the results are robust to a wide range of parameter values. In the simulations, convection excites gravity waves. The gravity waves then form a standing wave pattern, separating the domain into convectively active and inactive regions. We analyze the available potential energy (APE) budget and show that convection generates APE, providing energy for self-aggregation. By performing dimensional analysis, we develop a scaling theory for the size of convective aggregation, which is set by the gravity wave speed, damping time scale, and number density of convective storms. This paper provides a simple modeling framework to further study convective self-aggregation.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Da Yang, dayang@ucdavis.edu
Save