• Becker, T., C. S. Bretherton, C. Hohenegger, and B. Stevens, 2018: Estimating bulk entrainment with unaggregated and aggregated convection. Geophys. Res. Lett., 45, 455462, https://doi.org/10.1002/2017GL076640.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., M. E. Peters, and L. E. Back, 2004: Relationships between water vapor path and precipitation over the tropical oceans. J. Climate, 17, 15171528, https://doi.org/10.1175/1520-0442(2004)017<1517:RBWVPA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., P. N. Blossey, and M. Khairoutdinov, 2005: An energy-balance analysis of deep convective self-aggregation above uniform SST. J. Atmos. Sci., 62, 42734292, https://doi.org/10.1175/JAS3614.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durre, I., R. S. Vose, and D. B. Wuertz, 2006: Overview of the Integrated Global Radiosonde Archive. J. Climate, 19, 5368, https://doi.org/10.1175/JCLI3594.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., R. S. Hemler, and V. Ramaswamy, 1993: Radiative–convective equilibrium with explicit two-dimensional moist convection. J. Atmos. Sci., 50, 39093927, https://doi.org/10.1175/1520-0469(1993)050<3909:RCEWET>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jeevanjee, N., and D. M. Romps, 2018: Mean precipitation change from a deepening troposphere. Proc. Natl. Acad. Sci. USA, 115, 11 46511 470, https://doi.org/10.1073/pnas.1720683115.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lawson, R. P., and W. A. Cooper, 1990: Performance of some airborne thermometers in clouds. J. Atmos. Oceanic Technol., 7, 480494, https://doi.org/10.1175/1520-0426(1990)007<0480:POSATI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mather, J. H., T. P. Ackerman, W. E. Clements, F. J. Barnes, M. D. Ivey, L. D. Hatfield, and R. M. Reynolds, 1998: An atmospheric radiation and cloud station in the tropical western Pacific. Bull. Amer. Meteor. Soc., 79, 627642, https://doi.org/10.1175/1520-0477(1998)079<0627:AARACS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Po-Chedley, S., M. D. Zelinka, N. Jeevanjee, T. J. Thorsen, and B. D. Santer, 2019: Climatology explains intermodel spread in tropical upper tropospheric cloud and relative humidity response to greenhouse warming. Geophys. Res. Lett., 46, 13 39913 409, https://doi.org/10.1029/2019GL084786.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romps, D. M., 2010: A direct measure of entrainment. J. Atmos. Sci., 67, 19081927, https://doi.org/10.1175/2010JAS3371.1.

  • Romps, D. M., 2014: An analytical model for tropical relative humidity. J. Climate, 27, 74327449, https://doi.org/10.1175/JCLI-D-14-00255.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romps, D. M., 2016: Clausius–Clapeyron scaling of CAPE from analytical solutions to RCE. J. Atmos. Sci., 73, 37193737, https://doi.org/10.1175/JAS-D-15-0327.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romps, D. M., 2020: Fundamental Aspects of Turbulent Flows in Climate Dynamics. Lecture Notes of the Les Houches Summer School, Vol. 109, Oxford University Press, 45 pp.

  • Romps, D. M., and A. B. Charn, 2015: Sticky thermals: Evidence for a dominant balance between buoyancy and drag in cloud updrafts. J. Atmos. Sci., 72, 28902901, https://doi.org/10.1175/JAS-D-15-0042.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seeley, J. T., and D. M. Romps, 2015: Why does tropical convective available potential energy (CAPE) increase with warming? Geophys. Res. Lett., 42, 10 42910 437, https://doi.org/10.1002/2015GL066199.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seeley, J. T., and D. M. Romps, 2016: Tropical cloud buoyancy is the same in a world with or without ice. Geophys. Res. Lett., 43, 35723579, https://doi.org/10.1002/2016GL068583.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sherwood, S. C., D. Hernandez-Deckers, M. Colin, and F. Robinson, 2013: Slippery thermals and the cumulus entrainment paradox. J. Atmos. Sci., 70, 24262442, https://doi.org/10.1175/JAS-D-12-0220.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Singh, M. S., and P. A. O’Gorman, 2013: Influence of entrainment on the thermal stratification in simulations of radiative-convective equilibrium. Geophys. Res. Lett., 40, 43984403, https://doi.org/10.1002/grl.50796.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Singh, M. S., Z. Kuang, E. D. Maloney, W. M. Hannah, and B. O. Wolding, 2017: Increasing potential for intense tropical and subtropical thunderstorms under global warming. Proc. Natl. Acad. Sci. USA, 114, 11 65711 662, https://doi.org/10.1073/pnas.1707603114.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Singh, M. S., R. A. Warren, and C. Jakob, 2019: A steady-state model for the relationship between humidity, instability, and precipitation in the tropics. J. Adv. Model. Earth Syst., 11, 39733994, https://doi.org/10.1029/2019MS001686.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warren, R. A., M. S. Singh, and C. Jakob, 2020: Simulations of radiative-convective-dynamical equilibrium. J. Adv. Model. Earth Syst., 12, e2019MS001734, https://doi.org/10.1029/2019MS001734.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wing, A. A., and T. W. Cronin, 2016: Self-aggregation of convection in long channel geometry. Quart. J. Roy. Meteor. Soc., 142, 115, https://doi.org/10.1002/qj.2628.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wing, A. A., K. Emanuel, C. E. Holloway, and C. Muller, 2017: Convective self-aggregation in numerical simulations: A review. Surv. Geophys., 38, 11731197, https://doi.org/10.1007/s10712-017-9408-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 94 94 45
Full Text Views 44 44 19
PDF Downloads 55 55 25

Ascending Columns, WTG, and Convective Aggregation

View More View Less
  • 1 Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, California
  • 2 Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California
© Get Permissions
Restricted access

Abstract

Analytic solutions are derived for a convecting atmosphere with mean ascent using a zero-buoyancy bulk-plume approximation for moist convection. It has been suggested that such solutions should serve as a model for the relationship between humidity, instability, and precipitation in the tropics, but it is shown here that this interpretation is incompatible with the observed weak temperature gradient (WTG). Instead, the solutions can be used to understand the atmospheric state averaged over all tropical convecting regions. Using the analytic solutions in this way, they predict the changes in humidity, instability, and precipitation as a function of the size of the moist patch in a convectively aggregated state.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: David M. Romps, romps@berkeley.edu

Abstract

Analytic solutions are derived for a convecting atmosphere with mean ascent using a zero-buoyancy bulk-plume approximation for moist convection. It has been suggested that such solutions should serve as a model for the relationship between humidity, instability, and precipitation in the tropics, but it is shown here that this interpretation is incompatible with the observed weak temperature gradient (WTG). Instead, the solutions can be used to understand the atmospheric state averaged over all tropical convecting regions. Using the analytic solutions in this way, they predict the changes in humidity, instability, and precipitation as a function of the size of the moist patch in a convectively aggregated state.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: David M. Romps, romps@berkeley.edu
Save