• Benjamin, S. G., J. M. Brown, G. Brunet, P. Lynch, K. Saito, and T. W. Schlatter, 2019: 100 years of progress in forecasting and NWP applications. A Century of Progress in Atmospheric and Related Sciences: Celebrating the American Meteorological Society Centennial, Meteor. Monogr., No. 59, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0020.1.

    • Crossref
    • Export Citation
  • Boutle, I. A., J. E. J. Eyre, and A. P. Lock, 2014: Seamless stratocumulus simulation across the turbulent gray zone. Mon. Wea. Rev., 142, 16551668, https://doi.org/10.1175/MWR-D-13-00229.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and J. M. Fritsch, 2002: A benchmark simulation for moist nonhydrostatic numerical models. Mon. Wea. Rev., 130, 29172928, https://doi.org/10.1175/1520-0493(2002)130<2917:ABSFMN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and H. Morrison, 2012: Sensitivity of a simulated squall line to horizontal resolution and parameterization of microphysics. Mon. Wea. Rev., 140, 202225, https://doi.org/10.1175/MWR-D-11-00046.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chow, F. K., 2004: Subfilter-scale turbulence modeling for large-eddy simulation of the atmospheric boundary layer over complex terrain. Ph.D. thesis, Stanford University, 339 pp.

  • Chow, F. K., R. L. Street, M. Xue, and J. H. Ferziger, 2005: Explicit filtering and reconstruction turbulence modeling for large-eddy simulation of neutral boundary layer flow. J. Atmos. Sci., 62, 20582077, https://doi.org/10.1175/JAS3456.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chow, F. K., C. Schär, N. Ban, K. A. Lundquist, L. Schlemmer, and X. Shi, 2019: Crossing multiple gray zones in the transition from mesoscale to microscale simulation over complex terrain. Atmosphere, 10, 274, https://doi.org/10.3390/atmos10050274.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, A. J., W. A. Gallus, M. Xue, and F. Kong, 2009: A comparison of precipitation forecast skill between small convection-allowing and large convection-parameterizing ensembles. Wea. Forecasting, 24, 11211140, https://doi.org/10.1175/2009WAF2222222.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, R. A., J. H. Ferziger, and W. C. Reynolds, 1977: Evaluation of subgrid-scale turbulence models using a fully simulated turbulent flow. NASA STI/Recon Tech. Rep. TF-9, 127 pp.

  • Dawson, D. T., M. Xue, J. A. Milbrandt, and M. K. Yau, 2010: Comparison of evaporation and cold pool development between single-moment and multimoment bulk microphysics schemes in idealized simulations of tornadic thunderstorms. Mon. Wea. Rev., 138, 11521171, https://doi.org/10.1175/2009MWR2956.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1972: Numerical investigation of neutral and unstable planetary boundary layers. J. Atmos. Sci., 29, 91115, https://doi.org/10.1175/1520-0469(1972)029<0091:NIONAU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Efstathiou, G. A., and R. J. Beare, 2015: Quantifying and improving sub-grid diffusion in the boundary-layer grey zone. Quart. J. Roy. Meteor. Soc., 141, 30063017, https://doi.org/10.1002/qj.2585.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Efstathiou, G. A., R. J. Beare, S. Osborne, and A. P. Lock, 2016: Grey zone simulations of the morning convective boundary layer development. J. Geophys. Res. Atmos., 121, 47694782, https://doi.org/10.1002/2016JD024860.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fiori, E., A. Parodi, and F. Siccardi, 2010: Turbulence closure parameterization and grid spacing effects in simulated supercell storms. J. Atmos. Sci., 67, 38703890, https://doi.org/10.1175/2010JAS3359.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hanley, K., M. Whitall, A. Stirling, and P. Clark, 2019: Modifications to the representation of subgrid mixing in kilometre-scale versions of the Unified Model. Quart. J. Roy. Meteor. Soc., 145, 33613375, https://doi.org/10.1002/qj.3624.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ito, J., H. Niino, M. Nakanishi, and C.-H. Moeng, 2015: An extension of the Mellor–Yamada model to the terra incognita zone for dry convective mixed layers in the free convection regime. Bound.-Layer Meteor., 157, 2343, https://doi.org/10.1007/s10546-015-0045-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., and R. B. Wilhelmson, 1978a: The simulation of three-dimensional convective storm dynamics. J. Atmos. Sci., 35, 10701096, https://doi.org/10.1175/1520-0469(1978)035<1070:TSOTDC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., and R. B. Wilhelmson, 1978b: Simulations of right- and left-moving storms produced through storm splitting. J. Atmos. Sci., 35, 10971110, https://doi.org/10.1175/1520-0469(1978)035<1097:SORALM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kurowski, M. J., and J. Teixeira, 2018: A scale-adaptive turbulent kinetic energy closure for the dry convective boundary layer. J. Atmos. Sci., 75, 675690, https://doi.org/10.1175/JAS-D-16-0296.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lean, H. W., P. A. Clark, M. Dixon, N. M. Roberts, A. Fitch, R. Forbes, and C. Halliwell, 2008: Characteristics of high-resolution versions of the Met Office Unified Model for forecasting convection over the United Kingdom. Mon. Wea. Rev., 136, 34083424, https://doi.org/10.1175/2008MWR2332.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lebo, Z. J., and H. Morrison, 2015: Effects of horizontal and vertical grid spacing on mixing in simulated squall lines and implications for convective strength and structure. Mon. Wea. Rev., 143, 43554375, https://doi.org/10.1175/MWR-D-15-0154.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, Y.-L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22, 10651092, https://doi.org/10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moeng, C.-H., 1984: A large-eddy-simulation model for the study of planetary boundary-layer turbulence. J. Atmos. Sci., 41, 20522062, https://doi.org/10.1175/1520-0469(1984)041<2052:ALESMF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moeng, C.-H., 2014: A closure for updraft–downdraft representation of subgrid-scale fluxes in cloud-resolving models. Mon. Wea. Rev., 142, 703715, https://doi.org/10.1175/MWR-D-13-00166.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moeng, C.-H., M. A. LeMone, M. F. Khairoutdinov, S. K. Krueger, P. A. Bogenschutz, and D. A. Randall, 2009: The tropical marine boundary layer under a deep convection system: A large-eddy simulation study. J. Adv. Model. Earth Syst., 1, 16, https://doi.org/10.3894/JAMES.2009.1.16.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moeng, C.-H., P. Sullivan, M. Khairoutdinov, and D. Randall, 2010: A mixed scheme for subgrid-scale fluxes in cloud-resolving models. J. Atmos. Sci., 67, 36923705, https://doi.org/10.1175/2010JAS3565.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pearson, K. J., R. J. Hogan, R. P. Allan, G. M. S. Lister, and C. E. Holloway, 2010: Evaluation of the model representation of the evolution of convective systems using satellite observations of outgoing longwave radiation. J. Geophys. Res., 115, D20206, https://doi.org/10.1029/2010JD014265.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Potvin, C. K., and M. L. Flora, 2015: Sensitivity of idealized supercell simulations to horizontal grid spacing: Implications for Warn-on-Forecast. Mon. Wea. Rev., 143, 29983024, https://doi.org/10.1175/MWR-D-14-00416.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prein, A. F., and Coauthors, 2015: A review on regional convection-permitting climate modeling: Demonstrations, prospects, and challenges. Rev. Geophys., 53, 323361, https://doi.org/10.1002/2014RG000475.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roberts, B., M. Xue, A. D. Schenkman, and D. T. Dawson, 2016: The role of surface drag in tornadogenesis within an idealized supercell simulation. J. Atmos. Sci., 73, 33713395, https://doi.org/10.1175/JAS-D-15-0332.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwartz, C. S., and Coauthors, 2009: Next-day convection-allowing WRF Model guidance: A second look at 2-km versus 4-km grid spacing. Mon. Wea. Rev., 137, 33513372, https://doi.org/10.1175/2009MWR2924.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shi, X., F. K. Chow, R. L. Street, and G. H. Bryan, 2018a: An evaluation of LES turbulence models for scalar mixing in the stratocumulus-capped boundary layer. J. Atmos. Sci., 75, 14991507, https://doi.org/10.1175/JAS-D-17-0392.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shi, X., H. L. Hagen, F. K. Chow, G. H. Bryan, and R. L. Street, 2018b: Large-eddy simulation of the stratocumulus-capped boundary layer with explicit filtering and reconstruction turbulence modeling. J. Atmos. Sci., 75, 611637, https://doi.org/10.1175/JAS-D-17-0162.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shi, X., F. K. Chow, R. L. Street, and G. H. Bryan, 2019: Key elements of turbulence closures for simulating deep convection at kilometer-scale resolution. J. Adv. Model. Earth Syst., 11, 818838, https://doi.org/10.1029/2018MS001446.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shin, H. H., and S.-Y. Hong, 2015: Representation of the subgrid-scale turbulent transport in convective boundary layers at gray-zone resolutions. Mon. Wea. Rev., 143, 250271, https://doi.org/10.1175/MWR-D-14-00116.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simon, J. S., B. Zhou, J. D. Mirocha, and F. K. Chow, 2019: Explicit filtering and reconstruction to reduce grid dependence in convective boundary layer simulations using WRF-LES. Mon. Wea. Rev., 147, 18051821, https://doi.org/10.1175/MWR-D-18-0205.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., 2004: Evaluating mesoscale NWP models using kinetic energy spectra. Mon. Wea. Rev., 132, 30193032, https://doi.org/10.1175/MWR2830.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and J. B. Klemp, 2008: A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J. Comput. Phys., 227, 34653485, https://doi.org/10.1016/j.jcp.2007.01.037.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smagorinsky, J., 1963: General circulation experiments with the primitive equations. Mon. Wea. Rev., 91, 99164, https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stolz, S., N. A. Adams, and L. Kleiser, 2001: The approximate deconvolution model for large-eddy simulations of compressible flows and its application to shock-turbulent-boundary-layer interaction. Phys. Fluids, 13, 29853001, https://doi.org/10.1063/1.1397277.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Strauss, C., D. Ricard, C. Lac, and A. Verrelle, 2019: Evaluation of turbulence parametrizations in convective clouds and their environment based on a large-eddy simulation. Quart. J. Roy. Meteor. Soc., 145, 31953217, https://doi.org/10.1002/qj.3614.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., T. W. Horst, D. H. Lenschow, C.-H. Moeng, and J. C. Weil, 2003: Structure of subfilter-scale fluxes in the atmospheric surface layer with application to large-eddy simulation modelling. J. Fluid Mech., 482, 101139, https://doi.org/10.1017/S0022112003004099.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takemi, T., and R. Rotunno, 2003: The effects of subgrid model mixing and numerical filtering in simulations of mesoscale cloud systems. Mon. Wea. Rev., 131, 20852101, https://doi.org/10.1175/1520-0493(2003)131<2085:TEOSMM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, S. L., and D. J. Kirshbaum, 2020: On the sensitivity of deep-convection initiation to horizontal grid resolution. Quart. J. Roy. Meteor. Soc., 146, 10851105, https://doi.org/10.1002/qj.3726.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, R. L., and R. Edwards, 2000: An overview of environmental conditions and forecast implications of the 3 May 1999 tornado outbreak. Wea. Forecasting, 15, 682699, https://doi.org/10.1175/1520-0434(2000)015<0682:AOOECA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Verrelle, A., D. Ricard, and C. Lac, 2015: Sensitivity of high-resolution idealized simulations of thunderstorms to horizontal resolution and turbulence parametrization. Quart. J. Roy. Meteor. Soc., 141, 433448, https://doi.org/10.1002/qj.2363.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Verrelle, A., D. Ricard, and C. Lac, 2017: Evaluation and improvement of turbulence parameterization inside deep convective clouds at kilometer-scale resolution. Mon. Wea. Rev., 145, 39473967, https://doi.org/10.1175/MWR-D-16-0404.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vreman, B., B. Geurts, and H. Kuerten, 1996: Large-eddy simulation of the temporal mixing layer using the Clark model. Theor. Comput. Fluid Dyn., 8, 309324, https://doi.org/10.1007/BF00639698.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., W. C. Skamarock, and J. B. Klemp, 1997: The resolution dependence of explicitly modeled convective systems. Mon. Wea. Rev., 125, 527548, https://doi.org/10.1175/1520-0493(1997)125<0527:TRDOEM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wyngaard, J. C., 2004: Toward numerical modeling in the “terra incognita.” J. Atmos. Sci., 61, 18161826, https://doi.org/10.1175/1520-0469(2004)061<1816:TNMITT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, M., K. K. Droegemeier, and V. Wong, 2000: The Advanced Regional Prediction System (ARPS)—A multi-scale nonhydrostatic atmospheric simulation and prediction model. Part I: Model dynamics and verification. Meteor. Atmos. Phys., 75, 161193, https://doi.org/10.1007/s007030070003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, M., and Coauthors, 2001: The Advanced Regional Prediction System (ARPS)—A multi-scale nonhydrostatic atmospheric simulation and prediction tool. Part II: Model physics and applications. Meteor. Atmos. Phys., 76, 143165, https://doi.org/10.1007/s007030170027.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, M., D. Wang, J. Gao, K. Brewster, and K. K. Droegemeier, 2003: The Advanced Regional Prediction System (ARPS), storm-scale numerical weather prediction and data assimilation. Meteor. Atmos. Phys., 82, 139170, https://doi.org/10.1007/s00703-001-0595-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, X., J.-W. Bao, B. Chen, and E. D. Grell, 2018: A three-dimensional scale-adaptive turbulent kinetic energy scheme in the WRF-ARW Model. Mon. Wea. Rev., 146, 20232045, https://doi.org/10.1175/MWR-D-17-0356.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, B., and F. K. Chow, 2011: Large-eddy simulation of the stable boundary layer with explicit filtering and reconstruction turbulence modeling. J. Atmos. Sci., 68, 21422155, https://doi.org/10.1175/2011JAS3693.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, K., and Coauthors, 2018: Evaluation of real-time convection-permitting precipitation forecasts in China during the 2013–2014 summer season. J. Geophys. Res. Atmos., 123, 10371064, https://doi.org/10.1002/2017JD027445.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 132 132 70
Full Text Views 51 51 21
PDF Downloads 62 62 23

Scale-Similarity Subgrid-Scale Turbulence Closure for Supercell Simulations at Kilometer-Scale Resolutions: Comparison against a Large-Eddy Simulation

View More View Less
  • 1 Key Laboratory for Mesoscale Severe Weather, Ministry of Education, School of Atmospheric Sciences, Nanjing University, Nanjing, China
  • 2 Center for Analysis and Prediction of Storms, University of Oklahoma, Norman, Oklahoma
  • 3 Nanjing Joint Institute for Atmospheric Sciences, Chinese Academy of Meteorological Sciences, Nanjing, China
© Get Permissions
Restricted access

Abstract

In numerical simulations of deep convection at kilometer-scale horizontal resolutions, in-cloud subgrid-scale (SGS) turbulence plays an important role in the transport of heat, moisture, and other scalars. By coarse graining a 50 m high-resolution large-eddy simulation (LES) of an idealized supercell storm to kilometer-scale grid spacings ranging from 250 m to 4 km, the SGS fluxes of heat, moisture, cloud, and precipitating water contents are diagnosed a priori. The kilometer-scale simulations are shown to be within the “gray zone” as in-cloud SGS turbulent fluxes are comparable in magnitude to the resolved fluxes at 4 km spacing, and do not become negligible until ~500 m spacing. Vertical and horizontal SGS fluxes are of comparable magnitudes; both exhibit nonlocal characteristics associated with deep convection as opposed to local gradient-diffusion type of turbulent mixing. As such, they are poorly parameterized by eddy-diffusivity-based closures. To improve the SGS representation of turbulent fluxes in deep convective storms, a scale-similarity LES closure is adapted to kilometer-scale simulations. The model exhibits good correlations with LES-diagnosed SGS fluxes, and is capable of representing countergradient fluxes. In a posteriori tests, supercell storms simulated with the refined similarity closure model at kilometer-scale resolutions show better agreement with the LES benchmark in terms of SGS fluxes than those with a turbulent-kinetic-energy-based gradient-diffusion scheme. However, it underestimates the strength of updrafts, which is suggested to be a consequence of the model effective resolution being lower than the native grid resolution.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ming Xue, mxue@ou.edu

Abstract

In numerical simulations of deep convection at kilometer-scale horizontal resolutions, in-cloud subgrid-scale (SGS) turbulence plays an important role in the transport of heat, moisture, and other scalars. By coarse graining a 50 m high-resolution large-eddy simulation (LES) of an idealized supercell storm to kilometer-scale grid spacings ranging from 250 m to 4 km, the SGS fluxes of heat, moisture, cloud, and precipitating water contents are diagnosed a priori. The kilometer-scale simulations are shown to be within the “gray zone” as in-cloud SGS turbulent fluxes are comparable in magnitude to the resolved fluxes at 4 km spacing, and do not become negligible until ~500 m spacing. Vertical and horizontal SGS fluxes are of comparable magnitudes; both exhibit nonlocal characteristics associated with deep convection as opposed to local gradient-diffusion type of turbulent mixing. As such, they are poorly parameterized by eddy-diffusivity-based closures. To improve the SGS representation of turbulent fluxes in deep convective storms, a scale-similarity LES closure is adapted to kilometer-scale simulations. The model exhibits good correlations with LES-diagnosed SGS fluxes, and is capable of representing countergradient fluxes. In a posteriori tests, supercell storms simulated with the refined similarity closure model at kilometer-scale resolutions show better agreement with the LES benchmark in terms of SGS fluxes than those with a turbulent-kinetic-energy-based gradient-diffusion scheme. However, it underestimates the strength of updrafts, which is suggested to be a consequence of the model effective resolution being lower than the native grid resolution.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ming Xue, mxue@ou.edu
Save