Scale-Similarity Subgrid-Scale Turbulence Closure for Supercell Simulations at Kilometer-Scale Resolutions: Comparison against a Large-Eddy Simulation

Shiwei Sun aKey Laboratory for Mesoscale Severe Weather, Ministry of Education, School of Atmospheric Sciences, Nanjing University, Nanjing, China

Search for other papers by Shiwei Sun in
Current site
Google Scholar
PubMed
Close
,
Bowen Zhou aKey Laboratory for Mesoscale Severe Weather, Ministry of Education, School of Atmospheric Sciences, Nanjing University, Nanjing, China

Search for other papers by Bowen Zhou in
Current site
Google Scholar
PubMed
Close
,
Ming Xue bCenter for Analysis and Prediction of Storms, University of Oklahoma, Norman, Oklahoma

Search for other papers by Ming Xue in
Current site
Google Scholar
PubMed
Close
, and
Kefeng Zhu cNanjing Joint Institute for Atmospheric Sciences, Chinese Academy of Meteorological Sciences, Nanjing, China

Search for other papers by Kefeng Zhu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In numerical simulations of deep convection at kilometer-scale horizontal resolutions, in-cloud subgrid-scale (SGS) turbulence plays an important role in the transport of heat, moisture, and other scalars. By coarse graining a 50 m high-resolution large-eddy simulation (LES) of an idealized supercell storm to kilometer-scale grid spacings ranging from 250 m to 4 km, the SGS fluxes of heat, moisture, cloud, and precipitating water contents are diagnosed a priori. The kilometer-scale simulations are shown to be within the “gray zone” as in-cloud SGS turbulent fluxes are comparable in magnitude to the resolved fluxes at 4 km spacing, and do not become negligible until ~500 m spacing. Vertical and horizontal SGS fluxes are of comparable magnitudes; both exhibit nonlocal characteristics associated with deep convection as opposed to local gradient-diffusion type of turbulent mixing. As such, they are poorly parameterized by eddy-diffusivity-based closures. To improve the SGS representation of turbulent fluxes in deep convective storms, a scale-similarity LES closure is adapted to kilometer-scale simulations. The model exhibits good correlations with LES-diagnosed SGS fluxes, and is capable of representing countergradient fluxes. In a posteriori tests, supercell storms simulated with the refined similarity closure model at kilometer-scale resolutions show better agreement with the LES benchmark in terms of SGS fluxes than those with a turbulent-kinetic-energy-based gradient-diffusion scheme. However, it underestimates the strength of updrafts, which is suggested to be a consequence of the model effective resolution being lower than the native grid resolution.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ming Xue, mxue@ou.edu

Abstract

In numerical simulations of deep convection at kilometer-scale horizontal resolutions, in-cloud subgrid-scale (SGS) turbulence plays an important role in the transport of heat, moisture, and other scalars. By coarse graining a 50 m high-resolution large-eddy simulation (LES) of an idealized supercell storm to kilometer-scale grid spacings ranging from 250 m to 4 km, the SGS fluxes of heat, moisture, cloud, and precipitating water contents are diagnosed a priori. The kilometer-scale simulations are shown to be within the “gray zone” as in-cloud SGS turbulent fluxes are comparable in magnitude to the resolved fluxes at 4 km spacing, and do not become negligible until ~500 m spacing. Vertical and horizontal SGS fluxes are of comparable magnitudes; both exhibit nonlocal characteristics associated with deep convection as opposed to local gradient-diffusion type of turbulent mixing. As such, they are poorly parameterized by eddy-diffusivity-based closures. To improve the SGS representation of turbulent fluxes in deep convective storms, a scale-similarity LES closure is adapted to kilometer-scale simulations. The model exhibits good correlations with LES-diagnosed SGS fluxes, and is capable of representing countergradient fluxes. In a posteriori tests, supercell storms simulated with the refined similarity closure model at kilometer-scale resolutions show better agreement with the LES benchmark in terms of SGS fluxes than those with a turbulent-kinetic-energy-based gradient-diffusion scheme. However, it underestimates the strength of updrafts, which is suggested to be a consequence of the model effective resolution being lower than the native grid resolution.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ming Xue, mxue@ou.edu
Save
  • Benjamin, S. G. , J. M. Brown , G. Brunet , P. Lynch , K. Saito , and T. W. Schlatter , 2019: 100 years of progress in forecasting and NWP applications. A Century of Progress in Atmospheric and Related Sciences: Celebrating the American Meteorological Society Centennial, Meteor. Monogr., No. 59, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0020.1.

    • Crossref
    • Export Citation
  • Boutle, I. A. , J. E. J. Eyre , and A. P. Lock , 2014: Seamless stratocumulus simulation across the turbulent gray zone. Mon. Wea. Rev., 142, 16551668, https://doi.org/10.1175/MWR-D-13-00229.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H. , and J. M. Fritsch , 2002: A benchmark simulation for moist nonhydrostatic numerical models. Mon. Wea. Rev., 130, 29172928, https://doi.org/10.1175/1520-0493(2002)130<2917:ABSFMN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H. , and H. Morrison , 2012: Sensitivity of a simulated squall line to horizontal resolution and parameterization of microphysics. Mon. Wea. Rev., 140, 202225, https://doi.org/10.1175/MWR-D-11-00046.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chow, F. K. , 2004: Subfilter-scale turbulence modeling for large-eddy simulation of the atmospheric boundary layer over complex terrain. Ph.D. thesis, Stanford University, 339 pp.

  • Chow, F. K. , R. L. Street , M. Xue , and J. H. Ferziger , 2005: Explicit filtering and reconstruction turbulence modeling for large-eddy simulation of neutral boundary layer flow. J. Atmos. Sci., 62, 20582077, https://doi.org/10.1175/JAS3456.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chow, F. K. , C. Schär , N. Ban , K. A. Lundquist , L. Schlemmer , and X. Shi , 2019: Crossing multiple gray zones in the transition from mesoscale to microscale simulation over complex terrain. Atmosphere, 10, 274, https://doi.org/10.3390/atmos10050274.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, A. J. , W. A. Gallus , M. Xue , and F. Kong , 2009: A comparison of precipitation forecast skill between small convection-allowing and large convection-parameterizing ensembles. Wea. Forecasting, 24, 11211140, https://doi.org/10.1175/2009WAF2222222.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, R. A. , J. H. Ferziger , and W. C. Reynolds , 1977: Evaluation of subgrid-scale turbulence models using a fully simulated turbulent flow. NASA STI/Recon Tech. Rep. TF-9, 127 pp.

  • Dawson, D. T. , M. Xue , J. A. Milbrandt , and M. K. Yau , 2010: Comparison of evaporation and cold pool development between single-moment and multimoment bulk microphysics schemes in idealized simulations of tornadic thunderstorms. Mon. Wea. Rev., 138, 11521171, https://doi.org/10.1175/2009MWR2956.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W. , 1972: Numerical investigation of neutral and unstable planetary boundary layers. J. Atmos. Sci., 29, 91115, https://doi.org/10.1175/1520-0469(1972)029<0091:NIONAU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Efstathiou, G. A. , and R. J. Beare , 2015: Quantifying and improving sub-grid diffusion in the boundary-layer grey zone. Quart. J. Roy. Meteor. Soc., 141, 30063017, https://doi.org/10.1002/qj.2585.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Efstathiou, G. A. , R. J. Beare , S. Osborne , and A. P. Lock , 2016: Grey zone simulations of the morning convective boundary layer development. J. Geophys. Res. Atmos., 121, 47694782, https://doi.org/10.1002/2016JD024860.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fiori, E. , A. Parodi , and F. Siccardi , 2010: Turbulence closure parameterization and grid spacing effects in simulated supercell storms. J. Atmos. Sci., 67, 38703890, https://doi.org/10.1175/2010JAS3359.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hanley, K. , M. Whitall , A. Stirling , and P. Clark , 2019: Modifications to the representation of subgrid mixing in kilometre-scale versions of the Unified Model. Quart. J. Roy. Meteor. Soc., 145, 33613375, https://doi.org/10.1002/qj.3624.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ito, J. , H. Niino , M. Nakanishi , and C.-H. Moeng , 2015: An extension of the Mellor–Yamada model to the terra incognita zone for dry convective mixed layers in the free convection regime. Bound.-Layer Meteor., 157, 2343, https://doi.org/10.1007/s10546-015-0045-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klemp, J. B. , and R. B. Wilhelmson , 1978a: The simulation of three-dimensional convective storm dynamics. J. Atmos. Sci., 35, 10701096, https://doi.org/10.1175/1520-0469(1978)035<1070:TSOTDC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klemp, J. B. , and R. B. Wilhelmson , 1978b: Simulations of right- and left-moving storms produced through storm splitting. J. Atmos. Sci., 35, 10971110, https://doi.org/10.1175/1520-0469(1978)035<1097:SORALM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kurowski, M. J. , and J. Teixeira , 2018: A scale-adaptive turbulent kinetic energy closure for the dry convective boundary layer. J. Atmos. Sci., 75, 675690, https://doi.org/10.1175/JAS-D-16-0296.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lean, H. W. , P. A. Clark , M. Dixon , N. M. Roberts , A. Fitch , R. Forbes , and C. Halliwell , 2008: Characteristics of high-resolution versions of the Met Office Unified Model for forecasting convection over the United Kingdom. Mon. Wea. Rev., 136, 34083424, https://doi.org/10.1175/2008MWR2332.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lebo, Z. J. , and H. Morrison , 2015: Effects of horizontal and vertical grid spacing on mixing in simulated squall lines and implications for convective strength and structure. Mon. Wea. Rev., 143, 43554375, https://doi.org/10.1175/MWR-D-15-0154.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, Y.-L. , R. D. Farley , and H. D. Orville , 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22, 10651092, https://doi.org/10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moeng, C.-H. , 1984: A large-eddy-simulation model for the study of planetary boundary-layer turbulence. J. Atmos. Sci., 41, 20522062, https://doi.org/10.1175/1520-0469(1984)041<2052:ALESMF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moeng, C.-H. , 2014: A closure for updraft–downdraft representation of subgrid-scale fluxes in cloud-resolving models. Mon. Wea. Rev., 142, 703715, https://doi.org/10.1175/MWR-D-13-00166.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moeng, C.-H. , M. A. LeMone , M. F. Khairoutdinov , S. K. Krueger , P. A. Bogenschutz , and D. A. Randall , 2009: The tropical marine boundary layer under a deep convection system: A large-eddy simulation study. J. Adv. Model. Earth Syst., 1, 16, https://doi.org/10.3894/JAMES.2009.1.16.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moeng, C.-H. , P. Sullivan , M. Khairoutdinov , and D. Randall , 2010: A mixed scheme for subgrid-scale fluxes in cloud-resolving models. J. Atmos. Sci., 67, 36923705, https://doi.org/10.1175/2010JAS3565.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pearson, K. J. , R. J. Hogan , R. P. Allan , G. M. S. Lister , and C. E. Holloway , 2010: Evaluation of the model representation of the evolution of convective systems using satellite observations of outgoing longwave radiation. J. Geophys. Res., 115, D20206, https://doi.org/10.1029/2010JD014265.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Potvin, C. K. , and M. L. Flora , 2015: Sensitivity of idealized supercell simulations to horizontal grid spacing: Implications for Warn-on-Forecast. Mon. Wea. Rev., 143, 29983024, https://doi.org/10.1175/MWR-D-14-00416.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prein, A. F. , and Coauthors, 2015: A review on regional convection-permitting climate modeling: Demonstrations, prospects, and challenges. Rev. Geophys., 53, 323361, https://doi.org/10.1002/2014RG000475.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roberts, B. , M. Xue , A. D. Schenkman , and D. T. Dawson , 2016: The role of surface drag in tornadogenesis within an idealized supercell simulation. J. Atmos. Sci., 73, 33713395, https://doi.org/10.1175/JAS-D-15-0332.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwartz, C. S. , and Coauthors, 2009: Next-day convection-allowing WRF Model guidance: A second look at 2-km versus 4-km grid spacing. Mon. Wea. Rev., 137, 33513372, https://doi.org/10.1175/2009MWR2924.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shi, X. , F. K. Chow , R. L. Street , and G. H. Bryan , 2018a: An evaluation of LES turbulence models for scalar mixing in the stratocumulus-capped boundary layer. J. Atmos. Sci., 75, 14991507, https://doi.org/10.1175/JAS-D-17-0392.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shi, X. , H. L. Hagen , F. K. Chow , G. H. Bryan , and R. L. Street , 2018b: Large-eddy simulation of the stratocumulus-capped boundary layer with explicit filtering and reconstruction turbulence modeling. J. Atmos. Sci., 75, 611637, https://doi.org/10.1175/JAS-D-17-0162.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shi, X. , F. K. Chow , R. L. Street , and G. H. Bryan , 2019: Key elements of turbulence closures for simulating deep convection at kilometer-scale resolution. J. Adv. Model. Earth Syst., 11, 818838, https://doi.org/10.1029/2018MS001446.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shin, H. H. , and S.-Y. Hong , 2015: Representation of the subgrid-scale turbulent transport in convective boundary layers at gray-zone resolutions. Mon. Wea. Rev., 143, 250271, https://doi.org/10.1175/MWR-D-14-00116.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simon, J. S. , B. Zhou , J. D. Mirocha , and F. K. Chow , 2019: Explicit filtering and reconstruction to reduce grid dependence in convective boundary layer simulations using WRF-LES. Mon. Wea. Rev., 147, 18051821, https://doi.org/10.1175/MWR-D-18-0205.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C. , 2004: Evaluating mesoscale NWP models using kinetic energy spectra. Mon. Wea. Rev., 132, 30193032, https://doi.org/10.1175/MWR2830.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C. , and J. B. Klemp , 2008: A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J. Comput. Phys., 227, 34653485, https://doi.org/10.1016/j.jcp.2007.01.037.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smagorinsky, J. , 1963: General circulation experiments with the primitive equations. Mon. Wea. Rev., 91, 99164, https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stolz, S. , N. A. Adams , and L. Kleiser , 2001: The approximate deconvolution model for large-eddy simulations of compressible flows and its application to shock-turbulent-boundary-layer interaction. Phys. Fluids, 13, 29853001, https://doi.org/10.1063/1.1397277.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Strauss, C. , D. Ricard , C. Lac , and A. Verrelle , 2019: Evaluation of turbulence parametrizations in convective clouds and their environment based on a large-eddy simulation. Quart. J. Roy. Meteor. Soc., 145, 31953217, https://doi.org/10.1002/qj.3614.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P. , T. W. Horst , D. H. Lenschow , C.-H. Moeng , and J. C. Weil , 2003: Structure of subfilter-scale fluxes in the atmospheric surface layer with application to large-eddy simulation modelling. J. Fluid Mech., 482, 101139, https://doi.org/10.1017/S0022112003004099.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takemi, T. , and R. Rotunno , 2003: The effects of subgrid model mixing and numerical filtering in simulations of mesoscale cloud systems. Mon. Wea. Rev., 131, 20852101, https://doi.org/10.1175/1520-0493(2003)131<2085:TEOSMM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, S. L. , and D. J. Kirshbaum , 2020: On the sensitivity of deep-convection initiation to horizontal grid resolution. Quart. J. Roy. Meteor. Soc., 146, 10851105, https://doi.org/10.1002/qj.3726.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, R. L. , and R. Edwards , 2000: An overview of environmental conditions and forecast implications of the 3 May 1999 tornado outbreak. Wea. Forecasting, 15, 682699, https://doi.org/10.1175/1520-0434(2000)015<0682:AOOECA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Verrelle, A. , D. Ricard , and C. Lac , 2015: Sensitivity of high-resolution idealized simulations of thunderstorms to horizontal resolution and turbulence parametrization. Quart. J. Roy. Meteor. Soc., 141, 433448, https://doi.org/10.1002/qj.2363.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Verrelle, A. , D. Ricard , and C. Lac , 2017: Evaluation and improvement of turbulence parameterization inside deep convective clouds at kilometer-scale resolution. Mon. Wea. Rev., 145, 39473967, https://doi.org/10.1175/MWR-D-16-0404.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vreman, B. , B. Geurts , and H. Kuerten , 1996: Large-eddy simulation of the temporal mixing layer using the Clark model. Theor. Comput. Fluid Dyn., 8, 309324, https://doi.org/10.1007/BF00639698.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisman, M. L. , W. C. Skamarock , and J. B. Klemp , 1997: The resolution dependence of explicitly modeled convective systems. Mon. Wea. Rev., 125, 527548, https://doi.org/10.1175/1520-0493(1997)125<0527:TRDOEM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wyngaard, J. C. , 2004: Toward numerical modeling in the “terra incognita.” J. Atmos. Sci., 61, 18161826, https://doi.org/10.1175/1520-0469(2004)061<1816:TNMITT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, M. , K. K. Droegemeier , and V. Wong , 2000: The Advanced Regional Prediction System (ARPS)—A multi-scale nonhydrostatic atmospheric simulation and prediction model. Part I: Model dynamics and verification. Meteor. Atmos. Phys., 75, 161193, https://doi.org/10.1007/s007030070003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, M. , and Coauthors, 2001: The Advanced Regional Prediction System (ARPS)—A multi-scale nonhydrostatic atmospheric simulation and prediction tool. Part II: Model physics and applications. Meteor. Atmos. Phys., 76, 143165, https://doi.org/10.1007/s007030170027.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, M. , D. Wang , J. Gao , K. Brewster , and K. K. Droegemeier , 2003: The Advanced Regional Prediction System (ARPS), storm-scale numerical weather prediction and data assimilation. Meteor. Atmos. Phys., 82, 139170, https://doi.org/10.1007/s00703-001-0595-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, X. , J.-W. Bao , B. Chen , and E. D. Grell , 2018: A three-dimensional scale-adaptive turbulent kinetic energy scheme in the WRF-ARW Model. Mon. Wea. Rev., 146, 20232045, https://doi.org/10.1175/MWR-D-17-0356.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, B. , and F. K. Chow , 2011: Large-eddy simulation of the stable boundary layer with explicit filtering and reconstruction turbulence modeling. J. Atmos. Sci., 68, 21422155, https://doi.org/10.1175/2011JAS3693.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, K. , and Coauthors, 2018: Evaluation of real-time convection-permitting precipitation forecasts in China during the 2013–2014 summer season. J. Geophys. Res. Atmos., 123, 10371064, https://doi.org/10.1002/2017JD027445.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 423 0 0
Full Text Views 699 230 9
PDF Downloads 677 179 5