On the Structure of Instantaneous Radiative Forcing Kernels for Greenhouse Gases

Amanda C. Maycock School of Earth and Environment, University of Leeds, Leeds, United Kingdom

Search for other papers by Amanda C. Maycock in
Current site
Google Scholar
PubMed
Close
,
Christopher J. Smith School of Earth and Environment, University of Leeds, Leeds, United Kingdom

Search for other papers by Christopher J. Smith in
Current site
Google Scholar
PubMed
Close
,
Alexandru Rap School of Earth and Environment, University of Leeds, Leeds, United Kingdom

Search for other papers by Alexandru Rap in
Current site
Google Scholar
PubMed
Close
, and
Owain Rutherford School of Earth and Environment, University of Leeds, Leeds, United Kingdom

Search for other papers by Owain Rutherford in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

The Suite of Community Radiative Transfer Codes Based on Edwards and Slingo (SOCRATES) offline radiative transfer code is used to investigate the magnitude and structure of the instantaneous radiative forcing kernels (IRFKs) for five major greenhouse gases (GHGs; CO2, CH4, N2O, CFC-11, and O3). All gases produce IRFKs that peak in the tropical upper troposphere. In addition to differences in spectroscopic intensities and the position of absorption features relative to the peak of the Planck function for Earth’s temperature, the variation in current background concentration of gases substantially affects the IRFK magnitudes. When the background concentration of CO2 is reduced from parts per million to parts per trillion levels, the peak magnitude of the IRFK increases by a factor of 642. When all gases are set to parts per trillion concentrations in the troposphere, the peak IRFK magnitudes are 1.0, 3.0, 3.1, 58, and 75 W m−2 ppmv−1 (100 hPa)−1 for CH4, CO2, N2O, O3, and CFC-11, respectively. The altitude of the IRFK maximum also differs, with the maximum for CFC-11 and water vapor occurring above 100 hPa whereas the other gases peak near 150–200 hPa. Overlap with water vapor absorption decreases the magnitude of the IRFKs for all of the GHGs, particularly in the lower-to-middle troposphere, but it does not strongly affect the peak IRFK altitude. Cloud radiative effects reduce the magnitude of the IRFK for CO2 by around 10%–20% in the upper troposphere. The use of IRFKs to estimate instantaneous radiative forcing is found to be accurate for small-amplitude perturbations but becomes inaccurate for large-amplitude changes (e.g., a doubling) for gases with a higher atmospheric optical depth.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JAS-D-19-0267.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Amanda Maycock, a.c.maycock@leeds.ac.uk

Abstract

The Suite of Community Radiative Transfer Codes Based on Edwards and Slingo (SOCRATES) offline radiative transfer code is used to investigate the magnitude and structure of the instantaneous radiative forcing kernels (IRFKs) for five major greenhouse gases (GHGs; CO2, CH4, N2O, CFC-11, and O3). All gases produce IRFKs that peak in the tropical upper troposphere. In addition to differences in spectroscopic intensities and the position of absorption features relative to the peak of the Planck function for Earth’s temperature, the variation in current background concentration of gases substantially affects the IRFK magnitudes. When the background concentration of CO2 is reduced from parts per million to parts per trillion levels, the peak magnitude of the IRFK increases by a factor of 642. When all gases are set to parts per trillion concentrations in the troposphere, the peak IRFK magnitudes are 1.0, 3.0, 3.1, 58, and 75 W m−2 ppmv−1 (100 hPa)−1 for CH4, CO2, N2O, O3, and CFC-11, respectively. The altitude of the IRFK maximum also differs, with the maximum for CFC-11 and water vapor occurring above 100 hPa whereas the other gases peak near 150–200 hPa. Overlap with water vapor absorption decreases the magnitude of the IRFKs for all of the GHGs, particularly in the lower-to-middle troposphere, but it does not strongly affect the peak IRFK altitude. Cloud radiative effects reduce the magnitude of the IRFK for CO2 by around 10%–20% in the upper troposphere. The use of IRFKs to estimate instantaneous radiative forcing is found to be accurate for small-amplitude perturbations but becomes inaccurate for large-amplitude changes (e.g., a doubling) for gases with a higher atmospheric optical depth.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JAS-D-19-0267.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Amanda Maycock, a.c.maycock@leeds.ac.uk

Supplementary Materials

    • Supplemental Materials (PDF 977.80 KB)
Save
  • Banerjee, A., A. C. Maycock, and J. A. Pyle, 2018: Chemical and climatic drivers of radiative forcing due to changes in stratospheric and tropospheric ozone over the 21st century. Atmos. Chem. Phys., 18, 28992911, https://doi.org/10.5194/acp-18-2899-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collins, W. D., D. R. Feldman, C. Kuo, and N. H. Nguyen, 2018: Large regional shortwave forcing by anthropogenic methane informed by Jovian observations. Sci. Adv., 4, eaas9593, https://doi.org/10.1126/sciadv.aas9593.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cusack, S., J. M. Edwards, and M. J. Crowther, 1999: Investigating k distribution methods for parameterizing gaseous absorption in the Hadley Centre Climate Model. J. Geophys. Res., 104, 20512057, https://doi.org/10.1029/1998JD200063.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Edwards, J. M., and A. Slingo, 1996: Studies with a flexible new radiation code. I: Choosing a configuration for a large-scale model. Quart. J. Roy. Meteor. Soc., 122, 689719, https://doi.org/10.1002/qj.49712253107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Etminan, M., G. Myhre, E. J. Highwood, and K. P. Shine, 2016: Radiative forcing of carbon dioxide, methane, and nitrous oxide: A significant revision of the methane radiative forcing. Geophys. Res. Lett., 43, 12 61412 623, https://doi.org/10.1002/2016GL071930.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fels, S. B., J. D. Mahlman, M. D. Schwarzkopf, and R. W. Sinclair, 1980: Stratospheric sensitivity to perturbations in ozone and carbon dioxide: Radiative and dynamical response. J. Atmos. Sci., 37, 22652297, https://doi.org/10.1175/1520-0469(1980)037<2265:SSTPIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flanner, M. G., X. Huang, X. Chen, and G. Krinner, 2018: Climate response to negative greenhouse gas radiative forcing in polar winter. Geophys. Res. Lett., 45, 19972004, https://doi.org/10.1002/2017GL076668.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Forster, P. M., and K. P. Shine, 1997: Radiative forcing and temperature trends from stratospheric ozone changes. J. Geophys. Res., 102, 10 84110 855, https://doi.org/10.1029/96JD03510.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Forster, P. M., and Coauthors, 2011: Evaluation of radiation scheme performance within chemistry climate models. J. Geophys. Res., 116, D10302, http://doi.org/10.1029/2010JD015361.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Forster, P. M., and Coauthors, 2016: Recommendations for diagnosing effective radiative forcing from climate models for CMIP6. J. Geophys. Res. Atmos., 121, 12 46012 475, https://doi.org/10.1002/2016JD025320.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hansen, J., G. Russell, A. Lacis, I. Fung, D. Rind, and P. Stone, 1985: Climatic response times: Dependence on climate sensitivity and ocean mixing. Science, 229, 857859, https://doi.org/10.1126/science.229.4716.857.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hodnebrog, Ø., M. Etminan, J. S. Fuglestvedt, G. Marston, G. Myhre, C. J. Nielsen, K. P. Shine, and T. J. Wallington, 2013: Global warming potentials and radiative efficiencies of halocarbons and related compounds: A comprehensive review. Rev. Geophys., 51, 300378, https://doi.org/10.1002/rog.20013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, Y., X. Tan, and Y. Xia, 2016: Inhomogeneous radiative forcing of homogeneous greenhouse gases. J. Geophys. Res. Atmos., 121, 27802789, https://doi.org/10.1002/2015JD024569.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iglesias-Suarez, F., D. E. Kinnison, A. Rap, A. C. Maycock, O. Wild, and P. J. Young, 2018: Key drivers of ozone change and its radiative forcing over the 21st century. Atmos. Chem. Phys., 18, 61216139, https://doi.org/10.5194/acp-18-6121-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IPCC, 1990: Climate Change: The IPCC Scientific Assessment. Cambridge University Press, 410 pp., https://www.ipcc.ch/site/assets/uploads/2018/03/ipcc_far_wg_I_full_report.pdf.

    • Search Google Scholar
    • Export Citation
  • Lacis, A., D. Wuebbles, and J. Logan, 1990: Radiative forcing of climate by changes in the vertical distribution of ozone. J. Geophys. Res., 95, 99719981, https://doi.org/10.1029/JD095iD07p09971.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maycock, A. C., K. P. Shine, and M. M. Joshi, 2011: The temperature response to stratospheric water vapour changes. Quart. J. Roy. Meteor. Soc., 137, 10701082, http://doi.org/10.1002/qj.822.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Myhre, G., E. J. Highwood, K. P. Shine, and F. Stordal, 1998: New estimates of radiative forcing due to well mixed greenhouse gases. Geophys. Res. Lett., 25, 27152718, https://doi.org/10.1029/98GL01908.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Myhre, G., and Coauthors, 2009: Intercomparison of radiative forcing calculations of stratospheric water vapour and contrails. Meteor. Z., 18, 585596 http://doi.org/10.1127/0941-2948/2009/0411.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Myhre, G., and Coauthors, 2013: Anthropogenic and natural radiative forcing. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 659–740.

  • Petty, G. W., 2006: A First Course in Atmospheric Radiation. Sundog Publishing, 459 pp.

  • Ramaswamy, V., and Coauthors, 2018: Radiative forcing of climate: The historical evolution of the radiative forcing concept, the forcing agents and their quantification, and applications. A Century of Progress in Atmospheric and Related Sciences: Celebrating the American Meteorological Society Centennial, Meteor. Monogr., No. 59, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-19-0001.1.

    • Crossref
    • Export Citation
  • Rap, A., N. A. D. Richards, P. M. Forster, S. A. Monks, S. R. Arnold, and M. P. Chipperfield, 2015: Satellite constraint on the tropospheric ozone radiative effect. Geophys. Res. Lett., 42, 50745081, https://doi.org/10.1002/2015GL064037.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riese, M., F. Ploeger, A. Rap, B. Vogel, P. Konopka, M. Dameris, and P. Forster, 2012: Impact of uncertainties in atmospheric mixing on simulated UTLS composition and related radiative effects. J. Geophys. Res., 117, D16305, https://doi.org/10.1029/2012JD017751.

    • Search Google Scholar
    • Export Citation
  • Rind, D., and A. Lacis, 1993: The role of the stratosphere in climate change. Surv. Geophys., 14, 133165, https://doi.org/10.1007/BF02179221.

  • Rodgers, C. D., and C. D. Walshaw, 1966: The computation of infra-red cooling rate in planetary atmospheres. Quart. J. Roy. Meteor. Soc., 92, 6792, https://doi.org/10.1002/qj.49709239107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., and R. A. Schiffer, 1999: Advances in understanding clouds from ISCCP. Bull. Amer. Meteor. Soc., 80, 22612288, https://doi.org/10.1175/1520-0477(1999)080<2261:AIUCFI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rothman, L., and Coauthors, 2005: The HITRAN 2004 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transfer, 96, 139204, https://doi.org/10.1016/j.jqsrt.2004.10.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rothman, L., and Coauthors, 2013: The HITRAN2012 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transfer, 130, 450, https://doi.org/10.1016/j.jqsrt.2013.07.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmithüsen, H., J. Notholt, G. König-Langlo, P. Lemke, and T. Jung, 2015: How increasing CO2 leads to an increased negative greenhouse effect in Antarctica. Geophys. Res. Lett., 42, 10 42210 428, https://doi.org/10.1002/2015GL066749.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sejas, S. A., M. Cai, G. Liu, P. C. Taylor, and K.-K. Tung, 2016: A Lagrangian view of longwave radiative fluxes for understanding the direct heating response to a CO2 increase. J. Geophys. Res. Atmos., 121, 61916214, https://doi.org/10.1002/2015JD024738.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sherwood, S. C., S. Bony, O. Boucher, C. Bretherton, P. M. Forster, J. M. Gregory, and B. Stevens, 2015: Adjustments in the forcing–feedback framework for understanding climate change. Bull. Amer. Meteor. Soc., 96, 217228, https://doi.org/10.1175/BAMS-D-13-00167.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shine, K. P., 1991: On the cause of the relative greenhouse strength of gases such as the halocarbons. J. Atmos. Sci., 48, 15131518, https://doi.org/10.1175/1520-0469(1991)048<1513:OTCOTR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shine, K. P., and P. M. F. Forster, 1999: The effect of human activity on radiative forcing of climate change: A review of recent developments. Global Planet. Change, 20, 205225, https://doi.org/10.1016/S0921-8181(99)00017-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shine, K. P., and G. Myhre, 2020: The spectral nature of stratospheric temperature adjustment and its application to halocarbon radiative forcing. J. Adv. Model. Earth Syst., 12, e2019MS001951, https://doi.org/10.1029/2019MS001951.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, C. J., and Coauthors, 2018: Understanding rapid adjustments to diverse forcing agents. Geophys. Res. Lett., 45, 12 02312 031, https://doi.org/10.1029/2018GL079826.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Soden, B., and I. Held, 2006: An assessment of climate feedbacks in coupled ocean–atmosphere models. J. Climate, 19, 33543360, https://doi.org/10.1175/JCLI3799.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Solomon, S., K. H. Rosenlof, R. Portmann, J. Daniel, S. Davis, T. Sanford, and G.-K. Plattner, 2010: Contributions of stratospheric water vapor to decadal changes in the rate of global warming. Science, 327, 12191223, https://doi.org/10.1126/science.1182488.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walters, D., and Coauthors, 2019: The Met Office Unified Model Global Atmosphere 7.0/7.1 and JULES Global Land 7.0 configurations. Geosci. Model Dev., 12, 19091963, https://doi.org/10.5194/gmd-12-1909-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, W.-C., J. P. Pinto, and Y. L. Yung, 1980: Climatic effects due to halogenated compounds in the earth’s atmosphere. J. Atmos. Sci., 37, 333338, https://doi.org/10.1175/1520-0469(1980)037<0333:CEDTHC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wigley, T. M. L., 1987: Relative contributions of different trace gases to the greenhouse effect. Climate Monit., 16, 1429.

  • Zhong, W., and J. D. Haigh, 2013: The greenhouse effect and carbon dioxide. Weather, 68, 100105, https://doi.org/10.1002/wea.2072.