• Adams-Selin, R. D., and C. L. Ziegler, 2016: Forecasting hail using a one-dimensional hail growth model within WRF. Mon. Wea. Rev., 144, 49194939, https://doi.org/10.1175/MWR-D-16-0027.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adams-Selin, R. D., A. J. Clark, C. J. Melick, S. R. Dembek, I. L. Jirak, and C. L. Ziegler, 2019: Evolution of WRF-HAILCAST during the 2014–16 NOAA/Hazardous Weather Testbed Spring Forecasting Experiments. Wea. Forecasting, 34, 6179, https://doi.org/10.1175/WAF-D-18-0024.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alig, R. J., J. D. Kline, and M. Lichtenstein, 2004: Urbanization on the US landscape: Looking ahead in the 21st century. Landscape Urban Plann., 69, 219234, https://doi.org/10.1016/j.landurbplan.2003.07.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baker, L. A., A. J. Brazel, N. Selover, C. Martin, N. McIntyre, F. R. Steiner, A. Nelson, and L. Musacchio, 2002: Urbanization and warming of Phoenix (Arizona, USA): Impacts, feedbacks, and mitigation. Urban Ecosyst., 6, 183203, https://doi.org/10.1023/A:1026101528700.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bigg, E. K., 1953: The formation of atmospheric ice crystals by the freezing of droplets. Quart. J. Roy. Meteor. Soc., 79, 510519, https://doi.org/10.1002/qj.49707934207.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bornstein, R., and Q. Lin, 2000: Urban heat islands and summertime convective thunderstorms in Atlanta: Three case studies. Atmos. Environ., 34, 507516, https://doi.org/10.1016/S1352-2310(99)00374-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bougeault, P., and P. Lacarrere, 1989: Parametrization of orography-induced turbulence in a mesobeta-scale model. Mon. Wea. Rev., 117, 18721890, https://doi.org/10.1175/1520-0493(1989)117<1872:POOITI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, D. G., C. Polsky, P. Bolstad, S. D. Brody, D. Hulse, R. Kroh, T. R. Loveland, and A. Thomson, 2014: Land use and land cover change. Climate Change Impacts in the United States, J. M. Melillo, T. C. Richmond, and G. W. Yohe, Eds., U.S. Global Change Research Program, 318332, https://doi.org/10.7930/J05Q4T1Q.

    • Search Google Scholar
    • Export Citation
  • Carrió, G. G., and W. R. Cotton, 2011: Urban growth and aerosol effects on convection over Houston. Part II: Dependence of aerosol effects on instability. Atmos. Res., 102, 167174, https://doi.org/10.1016/j.atmosres.2011.06.022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585, https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cotton, W. C., and R. A. Anthes, 1989: Storm and Cloud Dynamics. Elsevier, 880 pp.

  • Cui, W., X. Dong, B. Xi, J. Fan, J. Tian, J. Wang, and T. M. McHardy, 2019: Understanding ice cloud-precipitation properties of three modes of mesoscale convective systems during PECAN. J. Geophys. Res. Atmos., 124, 41214140, https://doi.org/10.1029/2019JD030330.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, J., R. Zhang, G. Li, W.-K. Tao, and X. Li, 2007: Simulations of cumulus clouds using a spectral microphysics cloud-resolving model. J. Geophys. Res., 112, D04201, https://doi.org/10.1029/2006JD007688.

    • Search Google Scholar
    • Export Citation
  • Fan, J., R. Zhang, W.-K. Tao, and K. I. Mohr, 2008: Effects of aerosol optical properties on deep convective clouds and radiative forcing. J. Geophys. Res., 113, D08209, https://doi.org/10.1029/2007JD009257.

    • Search Google Scholar
    • Export Citation
  • Fan, J., L. R. Leung, Z. Li, H. Morrison, H. Chen, Y. Zhou, Y. Qian, and Y. Wang, 2012: Aerosol impacts on clouds and precipitation in eastern China: Results from bin and bulk microphysics. J. Geophys. Res., 117, D00K36, https://doi.org/10.1029/2011JD016537.

    • Search Google Scholar
    • Export Citation
  • Fan, J., and et al. , 2015: Improving representation of convective transport for scale-aware parameterization: 1. Convection and cloud properties simulated with spectral bin and bulk microphysics. J. Geophys. Res. Atmos., 120, 34853509, https://doi.org/10.1002/2014JD022142.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, J., Y. Wang, D. Rosenfeld, and X. Liu, 2016: Review of aerosol–cloud interactions: Mechanisms, significance, and challenges. J. Atmos. Sci., 73, 42214252, https://doi.org/10.1175/JAS-D-16-0037.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, J., and et al. , 2017: Cloud-resolving model intercomparison of an MC3E squall line case: Part I—Convective updrafts. J. Geophys. Res. Atmos., 122, 93519378, https://doi.org/10.1002/2017JD026622.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, J., and et al. , 2018: Substantial convection and precipitation enhancements by ultrafine aerosol particles. Science, 359, 411418, https://doi.org/10.1126/science.aan8461.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, J., Y. Zhang, Z. Li, J. Hu, and D. Rosenfeld, 2020: Urbanization-induced land and aerosol impacts on sea-breeze circulation and convective precipitation. Atmos. Chem. Phys., 20, 14 16314 182, https://doi.org/10.5194/acp-20-14163-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fast, J. D., W. I. Gustafson Jr., R. C. Easter, R. A. Zaveri, J. C. Barnard, E. G. Chapman, G. A. Grell, and S. E. Peckham, 2006: Evolution of ozone, particulates, and aerosol direct radiative forcing in the vicinity of Houston using a fully coupled meteorology-chemistry-aerosol model. J. Geophys. Res., 111, D21305, https://doi.org/10.1029/2005JD006721.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, Z., R. A. Houze Jr., L. R. Leung, F. Song, J. C. Hardin, J. Wang, W. I. Gustafson Jr., and C. R. Homeyer, 2019: Spatiotemporal characteristics and large-scale environments of mesoscale convective systems east of the Rocky Mountains. J. Climate, 32, 73037328, https://doi.org/10.1175/JCLI-D-19-0137.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flagg, D. D., and P. A. Taylor, 2011: Sensitivity of mesoscale model urban boundary layer meteorology to the scale of urban representation. Atmos. Chem. Phys., 11, 29512972, https://doi.org/10.5194/acp-11-2951-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Foote, G. B., 1984: A study of hail growth utilizing observed storm conditions. J. Climate Appl. Meteor., 23, 84101, https://doi.org/10.1175/1520-0450(1984)023<0084:ASOHGU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, W., J. Fan, R. C. Easter, Q. Yang, C. Zhao, and S. J. Ghan, 2016: Coupling spectral-bin cloud microphysics with the MOSAIC aerosol model in WRF-Chem: Methodology and results for marine stratocumulus clouds. J. Adv. Model. Earth Syst., 8, 12891309, https://doi.org/10.1002/2016MS000676.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geerts, B., and et al. , 2017: The 2015 Plains Elevated Convection At Night field project. Bull. Amer. Meteor. Soc., 98, 767786, https://doi.org/10.1175/BAMS-D-15-00257.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grell, G. A., S. E. Peckham, R. Schmitz, S. A. McKeen, G. Frost, W. C. Skamarock, and B. Eder, 2005: Fully coupled “online” chemistry within the WRF Model. Atmos. Environ., 39, 69576975, https://doi.org/10.1016/j.atmosenv.2005.04.027.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grimmond, S., 2007: Urbanization and global environmental change: Local effects of urban warming. Geogr. J., 173, 8388, https://doi.org/10.1111/j.1475-4959.2007.232_3.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guenther, A. B., X. Jiang, C. L. Heald, T. Sakulyanontvittaya, T. Duhl, L. K. Emmons, and X. Wang, 2012: The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): An extended and updated framework for modeling biogenic emissions. Geosci. Model Dev., 5, 14711492, https://doi.org/10.5194/gmd-5-1471-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gunturi, P., and M. Tippett, 2017: Managing severe thunderstorm risk: Impact of ENSO on U.S. tornado and hail frequencies. Willis Re Tech. Rep., 5 pp.

  • Guo, X., D. Fu, and J. Wang, 2006: Mesoscale convective precipitation system modified by urbanization in Beijing City. Atmos. Res., 82, 112126, https://doi.org/10.1016/j.atmosres.2005.12.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haberlie, A. M., W. S. Ashley, and T. J. Pingel, 2015: The effect of urbanisation on the climatology of thunderstorm initiation. Quart. J. Roy. Meteor. Soc., 141, 663675, https://doi.org/10.1002/qj.2499.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hale, R. C., K. P. Gallo, and T. R. Loveland, 2008: Influences of specific land use/land cover conversions on climatological normals of near-surface temperature. J. Geophys. Res., 113, D14113, https://doi.org/10.1029/2007JD009548.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hallegatte, S., and J. Corfee-Morlot, 2011: Understanding climate change impacts, vulnerability and adaptation at city scale: An introduction. Climatic Change, 104, 112, https://doi.org/10.1007/s10584-010-9981-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, B., and et al. , 2019: Cloud-resolving model intercomparison of an MC3E squall line case: Part II. Stratiform precipitation properties. J. Geophys. Res. Atmos., 124, 10901117, https://doi.org/10.1029/2018JD029596.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, J.-Y., J.-J. Baik, and H. Lee, 2014: Urban impacts on precipitation. Asia-Pac. J. Atmos. Sci., 50, 1730, https://doi.org/10.1007/s13143-014-0016-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Homeyer, C. R., and K. P. Bowman, 2017: Algorithm description document for version 3.1 of the three-dimensional gridded NEXRAD WSR-88D Radar (GridRad) dataset. NSF Tech. Rep., 23 pp., http://gridrad.org/pdf/GridRad-v3.1-Algorithm-Description.pdf.

  • Hubbart, J. A., and et al. , 2014: Localized climate and surface energy flux alterations across an urban gradient in the central U.S. Energies, 7, 17701791, https://doi.org/10.3390/en7031770.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, https://doi.org/10.1029/2008JD009944.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ilotoviz, E., A. P. Khain, N. Benmoshe, V. T. J. Phillips, and A. V. Ryzhkov, 2016: Effect of aerosols on freezing drops, hail, and precipitation in a midlatitude storm. J. Atmos. Sci., 73, 109144, https://doi.org/10.1175/JAS-D-14-0155.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ilotoviz, E., A. P. Khain, A. V. Ryzhkov, and J. C. Snyder, 2018: Relationship between aerosols, hail microphysics, and ZDR columns. J. Atmos. Sci., 75, 17551781, https://doi.org/10.1175/JAS-D-17-0127.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 2001: Nonsingular implementation of the Mellor-Yamada level 2.5 scheme in the NCEP Meso model. National Centers for Environmental Prediction Office Note 437, 61 pp., http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.459.5434&rep=rep1&type=pdf.

  • Kalnay, E., and M. Cai, 2003: Impact of urbanization and land-use change on climate. Nature, 423, 528531, https://doi.org/10.1038/nature01675.

  • Kar, S. K., and Y.-A. Liou, 2019: Influence of land use and land cover change on the formation of local lightning. Remote Sens., 11, 407, https://doi.org/10.3390/rs11040407.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaufmann, R. K., K. C. Seto, A. Schneider, Z. Liu, L. Zhou, and W. Wang, 2007: Climate response to rapid urban growth: Evidence of a human-induced precipitation deficit. J. Climate, 20, 22992306, https://doi.org/10.1175/JCLI4109.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khain, A., A. Pokrovsky, M. Pinsky, A. Seifert, and V. Phillips, 2004: Simulation of effects of atmospheric aerosols on deep turbulent convective clouds using a spectral microphysics mixed-phase cumulus cloud model. Part I: Model description and possible applications. J. Atmos. Sci., 61, 29632982, https://doi.org/10.1175/JAS-3350.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khain, A., D. Rosenfeld, and A. Pokrovsky, 2005: Aerosol impact on the dynamics and microphysics of deep convective clouds. Quart. J. Roy. Meteor. Soc., 131, 26392663, https://doi.org/10.1256/qj.04.62.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khain, A., D. Rosenfeld, A. Pokrovsky, U. Blahak, and A. Ryzhkov, 2011: The role of CCN in precipitation and hail in a mid-latitude storm as seen in simulations using a spectral (bin) microphysics model in a 2D dynamic frame. Atmos. Res., 99, 129146, https://doi.org/10.1016/j.atmosres.2010.09.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khain, A., and et al. , 2015: Representation of microphysical processes in cloud-resolving models: Spectral (bin) microphysics vs. bulk parameterization. Rev. Geophys., 53, 247322, https://doi.org/10.1002/2014RG000468.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kishtawal, C. M., D. Niyogi, M. Tewari, R. A. Pielke Sr., and J. M. Shepherd, 2010: Urbanization signature in the observed heavy rainfall climatology over India. Int. J. Climatol., 30, 19081916, https://doi.org/10.1002/joc.2044.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koch, D., and A. D. Del Genio, 2010: Black carbon semi-direct effects on cloud cover: Review and synthesis. Atmos. Chem. Phys., 10, 76857696, https://doi.org/10.5194/acp-10-7685-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lebo, Z., 2018: A numerical investigation of the potential effects of aerosol-induced warming and updraft width and slope on updraft intensity in deep convective clouds. J. Atmos. Sci., 75, 535554, https://doi.org/10.1175/JAS-D-16-0368.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lebo, Z., H. Morrison, and J. H. Seinfeld, 2012: Are simulated aerosol-induced effects on deep convective clouds strongly dependent on saturation adjustment? Atmos. Chem. Phys., 12, 99419964, https://doi.org/10.5194/acp-12-9941-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, S. S., B.-G. Kim, Z. Li, Y.-S. Choi, C.-H. Jung, J. Um, J. Mok, and K.-H. Seo, 2018: Aerosol as a potential factor to control the increasing torrential rain events in urban areas over the last decades. Atmos. Chem. Phys., 18, 12 53112 550, https://doi.org/10.5194/acp-18-12531-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liao, J., T. Wang, X. Wang, M. Xie, Z. Jiang, X. Huang, and J. Zhu, 2014: Impacts of different urban canopy schemes in WRF/Chem on regional climate and air quality in Yangtze River delta, China. Atmos. Res., 145–146, 226243, https://doi.org/10.1016/j.atmosres.2014.04.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, Y., 2011: GCIP/EOP surface: Precipitation NCEP/EMC 4km Gridded Data (GRIB) stage IV data, version 1.0. UCAR/NCAR Earth Observing Laboratory, accessed 19 February 2021, https://doi.org/doi:10.5065/D6PG1QDD.

    • Crossref
    • Export Citation
  • Liu, J., and D. Niyogi, 2019: Meta-analysis of urbanization impact on rainfall modification. Sci. Rep., 9, 7301, https://doi.org/10.1038/s41598-019-42494-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loftus, A. M., and W. R. Cotton, 2014a: A triple-moment hail bulk microphysics scheme. Part II: Verification and comparison with two-moment bulk microphysics. Atmos. Res., 150, 97128, https://doi.org/10.1016/j.atmosres.2014.07.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loftus, A. M., and W. R. Cotton, 2014b: Examination of CCN impacts on hail in a simulated supercell storm with triple-moment hail bulk microphysics. Atmos. Res., 147–148, 183204, https://doi.org/10.1016/j.atmosres.2014.04.017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loose, T., and R. D. Bornstein, 1977: Observations of mesoscale effects on frontal movement through an urban area. Mon. Wea. Rev., 105, 563571, https://doi.org/10.1175/1520-0493(1977)105<0563:OOMEOF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lukach, M., L. Foresti, O. Giot, and L. Delobbe, 2017: Estimating the occurrence and severity of hail based on 10 years of observations from weather radar in Belgium. Meteor. Appl., 24, 250259, https://doi.org/10.1002/met.1623.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martilli, A., A. Clappier, and M. W. Rotach, 2002: An urban surface exchange parameterisation for mesoscale models. Bound.-Layer Meteor., 104, 261304, https://doi.org/10.1023/A:1016099921195.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys., 20, 851875, https://doi.org/10.1029/RG020i004p00851.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Misenis, C., and Y. Zhang, 2010: An examination of sensitivity of WRF/Chem predictions to physical parameterizations, horizontal grid spacing, and nesting options. Atmos. Res., 97, 315334, https://doi.org/10.1016/j.atmosres.2010.04.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murillo, E. M., and C. R. Homeyer, 2019: Severe hail fall and hailstorm detection using remote sensing observations. J. Appl. Meteor. Climatol., 58, 947970, https://doi.org/10.1175/JAMC-D-18-0247.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nelson, S. P., 1983: The influence of storm flow structure on hail growth. J. Atmos. Sci., 40, 19651983, https://doi.org/10.1175/1520-0469(1983)040<1965:TIOSFS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niyogi, D., P. Pyle, M. Lei, S. P. Arya, C. M. Kishtawal, M. Shepherd, F. Chen, and B. Wolfe, 2011: Urban modification of thunderstorms: An observational storm climatology and model case study for the Indianapolis urban region. J. Appl. Meteor. Climatol., 50, 11291144, https://doi.org/10.1175/2010JAMC1836.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ortega, K. L., T. M. Smith, K. L. Manross, K. A. Scharfenberg, A. Witt, A. G. Kolodziej, and J. J. Gourley, 2009: The Severe Hazards Analysis and Verification Experiment. Bull. Amer. Meteor. Soc., 90, 15191530, https://doi.org/10.1175/2009BAMS2815.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ortega, K. L., J. M. Krause, and A. V. Ryzhkov, 2016: Polarimetric radar characteristics of melting hail. Part III: Validation of the algorithm for hail size discrimination. J. Appl. Meteor. Climatol., 55, 829848, https://doi.org/10.1175/JAMC-D-15-0203.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., U. Lohmann, G. B. Raga, C. D. O’Dowd, M. Kulmala, S. Fuzzi, A. Reissell, and M. O. Andreae, 2008: Flood or drought: How do aerosols affect precipitation? Science, 321, 13091313, https://doi.org/10.1126/science.1160606.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenzweig, C., W. Solecki, S. Hammer, and S. Mehrotra, 2010: Cities lead the way in climate–change action. Nature, 467, 909911, https://doi.org/10.1038/467909a.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., and D. S. Zrnić, 2019: Radar Polarimetry for Weather Observations. Springer, 486 pp.

  • Salamanca, F., and A. Martilli, 2010: A new building energy model coupled with an urban canopy parameterization for urban climate simulations—Part II. Validation with one dimension off-line simulations. Theor. Appl. Climatol., 99, 345356, https://doi.org/10.1007/s00704-009-0143-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sarangi, C., S. N. Tripathi, Y. Qian, S. Kumar, and L. Ruby Leung, 2018: Aerosol and urban land use effect on rainfall around cities in Indo-Gangetic basin from observations and cloud resolving model simulations. J. Geophys. Res. Atmos., 123, 36453667, https://doi.org/10.1002/2017JD028004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmid, P. E., and D. Niyogi, 2017: Modeling urban precipitation modification by spatially heterogeneous aerosols. J. Appl. Meteor. Climatol., 56, 21412153, https://doi.org/10.1175/JAMC-D-16-0320.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seigel, R. B., and S. C. van den Heever, 2013: Squall-line intensification via hydrometeor recirculation. J. Atmos. Sci., 70, 20122031, https://doi.org/10.1175/JAS-D-12-0266.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheffield, A. M., S. M. Saleeby, and S. C. van den Heever, 2015: Aerosol-induced mechanisms for cumulus congestus growth. J. Geophys. Res. Atmos., 120, 89418952, https://doi.org/10.1002/2015JD023743.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shem, W., and M. Shepherd, 2009: On the impact of urbanization on summertime thunderstorms in Atlanta: Two numerical model case studies. Atmos. Res., 92, 172189, https://doi.org/10.1016/j.atmosres.2008.09.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shepherd, J. M., 2005: A review of current investigations of urban-induced rainfall and recommendations for the future. Earth Interact., 9, https://doi.org/10.1175/EI156.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shepherd, J. M., H. Pierce, and A. J. Negri, 2002: Rainfall modification by major urban areas: Observations from spaceborne rain radar on the TRMM satellite. J. Appl. Meteor., 41, 689701, https://doi.org/10.1175/1520-0450(2002)041<0689:RMBMUA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shimadera, H., A. Kondo, K. L. Shrestha, K. Kitaoka, and Y. Inoue, 2015: Numerical evaluation of the impact of urbanization on summertime precipitation in Osaka, Japan. Adv. Meteor., 2015, 111, https://doi.org/10.1155/2015/379361.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simpson, M., S. Raman, R. Suresh, and U. C. Mohanty, 2008: Urban effects of Chennai on sea breeze induced convection and precipitation. J. Earth Syst. Sci., 117, 897909, https://doi.org/10.1007/s12040-008-0075-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and et al. , 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., https://doi.org/10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Storm Prediction Center, 2012: Annual severe weather report summary. NOAA, https://www.spc.noaa.gov/wcm/.

  • Tessendorf, S. A., L. J. Miller, K. C. Wiens, and S. A. Rutledge, 2005: The 29 June 2000 supercell observed during STEPS. Part I: Kinematics and microphysics. J. Atmos. Sci., 62, 41274150, https://doi.org/10.1175/JAS3585.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van den Heever, S. C., and W. R. Cotton, 2007: Urban aerosol impacts on downwind convective storms. J. Appl. Meteor. Climatol., 46, 828850, https://doi.org/10.1175/JAM2492.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, C.-G., Y.-J. Shen, F. Luo, L. Cao, J.-D. Yan, and H.-M. Jiang, 2017: Comparison and analysis of several planetary boundary layer schemes in WRF Model between clear and overcast days. Chin. J. Geophys., 60, 141153, https://doi.org/10.1002/cjg2.30034.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wiedinmyer, C., S. K. Akagi, R. J. Yokelson, L. K. Emmons, J. A. Al-Saadi, J. J. Orlando, and A. J. Soja, 2011: The Fire Inventory from NCAR (FINN): A high resolution global model to estimate the emissions from open burning. Geosci. Model Dev., 4, 625641, https://doi.org/10.5194/gmd-4-625-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zaveri, R. A., R. C. Easter, J. D. Fast, and L. K. Peters, 2008: Model for Simulating Aerosol Interactions and Chemistry (MOSAIC). J. Geophys. Res., 113, D13204, https://doi.org/10.1029/2007JD008782.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., J. Fan, T. Logan, Z. Li, and C. R. Homeyer, 2019: Wildfire impact on environmental thermodynamics and severe convective storms. Geophys. Res. Lett., 46, 10 08210 093, https://doi.org/10.1029/2019GL084534.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhong, S., and X.-Q. Yang, 2015: Ensemble simulations of the urban effect on a summer rainfall event in the Great Beijing Metropolitan Area. Atmos. Res., 153, 318334, https://doi.org/10.1016/j.atmosres.2014.09.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhong, S., Y. Qian, C. Zhao, R. Leung, and X. Q. Yang, 2015: A case study of urbanization impact on summer precipitation in the Greater Beijing Metropolitan Area: Urban heat island versus aerosol effects. J. Geophys. Res. Atmos., 120, 10 90310 914, https://doi.org/10.1002/2015JD023753.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhong, S., and et al. , 2017: Urbanization-induced urban heat island and aerosol effects on climate extremes in the Yangtze River delta region of China. Atmos. Chem. Phys., 17, 54395457, https://doi.org/10.5194/acp-17-5439-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ziegler, C. L., P. S. Ray, and N. C. Knight, 1983: Hail growth in an Oklahoma multicell storm. J. Atmos. Sci., 40, 17681791, https://doi.org/10.1175/1520-0469(1983)040<1768:HGIAOM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 369 369 46
Full Text Views 168 168 24
PDF Downloads 188 188 17

Urbanization-Induced Land and Aerosol Impacts on Storm Propagation and Hail Characteristics

View More View Less
  • 1 Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, Washington
  • | 2 School of Meteorology, University of Oklahoma, Norman, Oklahoma
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Changes in land surface and aerosol characteristics from urbanization can affect dynamic and microphysical properties of severe storms, thus affecting hazardous weather events resulting from these storms such as hail and tornadoes. We examine the joint and individual effects of urban land and anthropogenic aerosols of Kansas City on a severe convective storm observed during the 2015 Plains Elevated Convection At Night (PECAN) field campaign, focusing on storm evolution, convective intensity, and hail characteristics. The simulations are carried out at the cloud-resolving scale (1 km) using a version of WRF-Chem in which the spectral-bin microphysics (SBM) is coupled with the Model for Simulating Aerosol Interactions and Chemistry (MOSAIC). It is found that the urban land effect of Kansas City initiated a much stronger convective cell and the storm got further intensified when interacting with stronger turbulence induced by the urban land. The urban land effect also changed the storm path by diverting the storm toward the city, mainly resulting from enhanced urban land-induced convergence in the urban area and around the urban–rural boundaries. The joint effect of urban land and anthropogenic aerosols enhances occurrences of both severe hail and significant severe hail by ~20% by enhancing hail formation and growth from riming. Overall the urban land effect on convective intensity and hail is relatively larger than the anthropogenic aerosol effect, but the joint effect is more notable than either of the individual effects, emphasizing the importance of considering both effects in evaluating urbanization effects.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JAS-D-20-0106.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

This article is included in the Plains Elevated Convection At Night (PECAN) Special Collection.

Corresponding author: Jiwen Fan, jiwen.fan@pnnl.gov

Abstract

Changes in land surface and aerosol characteristics from urbanization can affect dynamic and microphysical properties of severe storms, thus affecting hazardous weather events resulting from these storms such as hail and tornadoes. We examine the joint and individual effects of urban land and anthropogenic aerosols of Kansas City on a severe convective storm observed during the 2015 Plains Elevated Convection At Night (PECAN) field campaign, focusing on storm evolution, convective intensity, and hail characteristics. The simulations are carried out at the cloud-resolving scale (1 km) using a version of WRF-Chem in which the spectral-bin microphysics (SBM) is coupled with the Model for Simulating Aerosol Interactions and Chemistry (MOSAIC). It is found that the urban land effect of Kansas City initiated a much stronger convective cell and the storm got further intensified when interacting with stronger turbulence induced by the urban land. The urban land effect also changed the storm path by diverting the storm toward the city, mainly resulting from enhanced urban land-induced convergence in the urban area and around the urban–rural boundaries. The joint effect of urban land and anthropogenic aerosols enhances occurrences of both severe hail and significant severe hail by ~20% by enhancing hail formation and growth from riming. Overall the urban land effect on convective intensity and hail is relatively larger than the anthropogenic aerosol effect, but the joint effect is more notable than either of the individual effects, emphasizing the importance of considering both effects in evaluating urbanization effects.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JAS-D-20-0106.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

This article is included in the Plains Elevated Convection At Night (PECAN) Special Collection.

Corresponding author: Jiwen Fan, jiwen.fan@pnnl.gov

Supplementary Materials

    • Supplemental Materials (PDF 3.55 MB)
Save