Potential Role of Irreversible Moist Processes in Modulating Tropical Cyclone Surface Wind Structure

Danyang Wang Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing, China

Search for other papers by Danyang Wang in
Current site
Google Scholar
PubMed
Close
and
Yanluan Lin Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing, China

Search for other papers by Yanluan Lin in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-0865-0580
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

Tropical cyclone (TC) wind structure is important for its intensity change and induced damage, but its modulating factors remain to be explored. A heat-engine-based surface wind structure parameter α, reflecting TC’s relative compactness, is introduced and derived based on an entropy budget framework. We found that α is modulated by three key parameters: the thermodynamic efficiency ϵPI in potential intensity theory, the Carnot efficiency ϵC of the system, and the degree of irreversibility αirr of the system. A higher αirr contributes to a larger α and a lower heat engine efficiency. An expression linking TC intensity and compactness also emerges under this framework. Idealized simulations of a typical moist TC (CTL), a dry (DRY) TC, and a moist reversible TC (REV; in which hydrometeors do not fall out) evinced that the significantly higher αirr in CTL, due to irreversible entropy productions from precipitation dissipation, water vapor diffusion, and irreversible phase changes, contributes to its much larger compactness compared to DRY and REV. The study illustrates the importance of irreversible entropy production processes in modulating TC surface wind field. Simple estimate suggests that α will increase due to a hypothesized increased αirr with warming because of increased water content. This indicates that TCs will become more compact in a warmer climate.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JAS-D-20-0192.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yanluan Lin, yanluan@tsinghua.edu.cn

Abstract

Tropical cyclone (TC) wind structure is important for its intensity change and induced damage, but its modulating factors remain to be explored. A heat-engine-based surface wind structure parameter α, reflecting TC’s relative compactness, is introduced and derived based on an entropy budget framework. We found that α is modulated by three key parameters: the thermodynamic efficiency ϵPI in potential intensity theory, the Carnot efficiency ϵC of the system, and the degree of irreversibility αirr of the system. A higher αirr contributes to a larger α and a lower heat engine efficiency. An expression linking TC intensity and compactness also emerges under this framework. Idealized simulations of a typical moist TC (CTL), a dry (DRY) TC, and a moist reversible TC (REV; in which hydrometeors do not fall out) evinced that the significantly higher αirr in CTL, due to irreversible entropy productions from precipitation dissipation, water vapor diffusion, and irreversible phase changes, contributes to its much larger compactness compared to DRY and REV. The study illustrates the importance of irreversible entropy production processes in modulating TC surface wind field. Simple estimate suggests that α will increase due to a hypothesized increased αirr with warming because of increased water content. This indicates that TCs will become more compact in a warmer climate.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JAS-D-20-0192.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yanluan Lin, yanluan@tsinghua.edu.cn

Supplementary Materials

    • Supplemental Materials (PDF 219.94 KB)
Save
  • Bannon, P. R., 2015: Entropy production and climate efficiency. J. Atmos. Sci., 72, 32683280, https://doi.org/10.1175/JAS-D-14-0361.1.

  • Bister, M., and K. A. Emanuel, 1998: Dissipative heating and hurricane intensity. Meteor. Atmos. Phys., 65, 233240, https://doi.org/10.1007/BF01030791.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bister, M., N. Renno, O. Pauluis, and K. A. Emanuel, 2011: Comment on Makarieva et al. ‘A critique of some modern applications of the Carnot heat engine concept: The dissipative heat engine cannot exist.’ Proc. Roy. Soc. London, 467A, 16, https://doi.org/10.1098/rspa.2010.0087.

    • Search Google Scholar
    • Export Citation
  • Bjerknes, J., 1938: Saturated-adiabatic ascent of air through dry-adiabatically descending environment. Quart. J. Roy. Meteor. Soc., 64, 325330.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and J. M. Fritsch, 2002: A benchmark simulation for moist nonhydrostatic numerical model. Mon. Wea. Rev., 130, 29172928, https://doi.org/10.1175/1520-0493(2002)130<2917:ABSFMN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and R. Rotunno, 2009: The maximum intensity of tropical cyclones in axisymmetric numerical model simulations. J. Atmos. Sci., 137, 17701789, https://doi.org/10.1175/2008MWR2709.1.

    • Search Google Scholar
    • Export Citation
  • Chavas, D. R., and K. A. Emanuel, 2014: Equilibrium tropical cyclone size in an idealized state of axisymmetric radiative–convective equilibrium. J. Atmos. Sci., 71, 16631680, https://doi.org/10.1175/JAS-D-13-0155.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chavas, D. R., and N. Lin, 2016: A model for the complete radial structure of the tropical cyclone wind field. Part II: Wind field variability. J. Atmos. Sci., 73, 30933113, https://doi.org/10.1175/JAS-D-15-0185.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chavas, D. R., N. Lin, and K. A. Emanuel, 2015: A model for the complete radial structure of the tropical cyclone wind field. Part I: Comparison with observed structure. J. Atmos. Sci., 72, 36473662, https://doi.org/10.1175/JAS-D-15-0014.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cronin, T. W., and D. R. Chavas, 2019: Dry and semidry tropical cyclones. J. Atmos. Sci., 76, 21932212, https://doi.org/10.1175/JAS-D-18-0357.1.

    • Search Google Scholar
    • Export Citation
  • Dunion, J. P., 2011: Rewriting the climatology of the tropical North Atlantic and Caribbean Sea atmosphere. J. Climate, 24, 893908, https://doi.org/10.1175/2010JCLI3496.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1985: Frontal circulations in the presence of small moist symmetric stability. J. Atmos. Sci., 42, 10621071, https://doi.org/10.1175/1520-0469(1985)042<1062:FCITPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1986: An air–sea interaction theory for tropical cyclones. Part I: Steady state maintenance. J. Atmos. Sci., 43, 585605, https://doi.org/10.1175/1520-0469(1986)043<0585:AASITF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1988: The maximum intensity of hurricanes. J. Atmos. Sci., 45, 11431155, https://doi.org/10.1175/1520-0469(1988)045<1143:TMIOH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1991: The theory of hurricanes. Annu. Rev. Fluid Mech., 23, 179196, https://doi.org/10.1146/annurev.fl.23.010191.001143.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1997: Some aspects of hurricane inner-core dynamics and energetics. J. Atmos. Sci., 54, 10141026, https://doi.org/10.1175/1520-0469(1997)054<1014:SAOHIC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 2003: Tropical cyclones. Annu. Rev. Earth Planet. Sci., 31, 75104, https://doi.org/10.1146/annurev.earth.31.100901.141259.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 2004: Tropical cyclone energetics and structure. Atmospheric Turbulence and Mesoscale Meteorology, E. Fedorovich, R. Rotunno, and B. Stevens, Eds., Cambridge University Press, 165–192.

    • Crossref
    • Export Citation
  • Emanuel, K. A., and R. Rotunno, 2011: Self-stratification of tropical cyclone outflow. Part I: Implications for storm structure. J. Atmos. Sci., 68, 22362249, https://doi.org/10.1175/JAS-D-10-05024.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guo, X., and Z.-M. Tan, 2017: Tropical cyclone fullness: A new concept for interpreting storm intensity. Geophys. Res. Lett., 44, 43244331, https://doi.org/10.1002/2017GL073680.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kessler, E., 1995: On the continuity and distribution of water substance in atmospheric circulations. Atmos. Res., 38, 109145, https://doi.org/10.1016/0169-8095(94)00090-Z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kowaleski, A. M., and J. L. Evans, 2016: A reformulation of tropical cyclone potential intensity theory incorporating energy production along a radial trajectory. Mon. Wea. Rev., 144, 35693578, https://doi.org/10.1175/MWR-D-15-0383.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lucarini, V., K. Fraedrich, and F. Lunkeit, 2010: Thermodynamic analysis of snowball Earth hysteresis experiment: Efficiency, entropy production and irreversibility. Quart. J. Roy. Meteor. Soc., 136, 211, https://doi.org/10.1002/qj.543.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lucarini, V., K. Fraedrich, and F. Ragone, 2011: New results on the thermodynamic properties of the climate system. J. Atmos. Sci., 68, 24382458, https://doi.org/10.1175/2011JAS3713.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mrowiec, A., S. T. Garner, and O. M. Pauluis, 2011: Axisymmetric hurricane in a dry atmosphere: Theoretical framework and numerical experiments. J. Atmos. Sci., 68, 16071619, https://doi.org/10.1175/2011JAS3639.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nystrom, R. G., X. Chen, F. Zhang, and C. A. Davis, 2020a: Nonlinear impacts of surface exchange coefficient uncertainty on tropical cyclone intensity and air-sea interactions. Geophys. Res. Lett., 47, e2019GL085783, https://doi.org/10.1029/2019GL085783.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nystrom, R. G., R. Rotunno, C. A. Davis, and F. Zhang, 2020b: Consistent impacts of surface enthalpy and drag coefficient uncertainty between an analytical model and simulated tropical cyclone maximum intensity and storm structure. J. Atmos. Sci., 77, 30593080, https://doi.org/10.1175/JAS-D-19-0357.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ozawa, H., and S. Shimokawa, 2015: Thermodynamics of a tropical cyclone: Generation and dissipation of mechanical energy in a self-driven convection system. Tellus, 67A, 24216, https://doi.org/10.3402/tellusa.v67.24216.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pauluis, O. M., and I. M. Held, 2002a: Entropy budget of an atmosphere in radiative–convective equilibrium. Part I: Maximum work and frictional dissipation. J. Atmos. Sci., 59, 125139, https://doi.org/10.1175/1520-0469(2002)059<0125:EBOAAI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pauluis, O. M., and I. M. Held, 2002b: Entropy budget of an atmosphere in radiative–convective equilibrium. Part II: Latent heat transport and moist processes. J. Atmos. Sci., 59, 140149, https://doi.org/10.1175/1520-0469(2002)059<0140:EBOAAI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pauluis, O. M., and F. Zhang, 2017: Reconstruction of thermodynamic cycles in a high-resolution simulation of a hurricane. J. Atmos. Sci., 74, 33673381, https://doi.org/10.1175/JAS-D-16-0353.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pauluis, O. M., V. Balaji, and I. M. Held, 2000: Frictional dissipation in a precipitating atmosphere. J. Atmos. Sci., 57, 989994, https://doi.org/10.1175/1520-0469(2000)057<0989:FDIAPA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romps, D. M., 2008: The dry-entropy budget of a moist atmosphere. J. Atmos. Sci., 65, 37793799, https://doi.org/10.1175/2008JAS2679.1.

  • Rotunno, R., and K. A. Emanuel, 1987: An air–sea interaction theory for tropical cyclones. Part II: Evolutionary study using a nonhydrostatic axisymmetric numerical model. J. Atmos. Sci., 44, 542561, https://doi.org/10.1175/1520-0469(1987)044<0542:AAITFT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rousseau-Rizzi, R., and K. A. Emanuel, 2019: An evaluation of hurricane superintensity in axisymmetric numerical models. J. Atmos. Sci., 76, 16971708, https://doi.org/10.1175/JAS-D-18-0238.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sabuwala, T., G. Gioia, and P. Chakraborty, 2015: Effect of rainpower on hurricane intensity. Geophys. Res. Lett., 42, 30243029, https://doi.org/10.1002/2015GL063785.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seeley, J. T., N. Jeevanjee, and D. M. Romps, 2019: FAT or FiTT: Are anvil clouds or the tropopause temperature invariant? Geophys. Res. Lett., 46, 18421850, https://doi.org/10.1029/2018GL080096.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Singh, M. S., and P. A. O’ Gorman, 2016: Scaling of the entropy budget with surface temperature in radiative-convective equilibrium. J. Adv. Model. Earth Syst., 8, 11321150, https://doi.org/10.1002/2016MS000673.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sugi, M., and J. Yoshimura, 2012: Decreasing trend of tropical cyclone frequency in 228-year high-resolution AGCM simulations. Geophys. Res. Lett., 39, L19805, https://doi.org/10.1029/2012GL053360.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sugi, M., K. Yoshida, and H. Murakami, 2015: More tropical cyclones in a cooler climate? Geophys. Res. Lett., 42, 67806784, https://doi.org/10.1002/2015GL064929.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, D., and Y. Lin, 2020: Size and structure of dry and moist reversible tropical cyclones. J. Atmos. Sci., 77, 20912114, https://doi.org/10.1175/JAS-D-19-0229.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zakinyan, R. G., A. R. Zakinyan, and A. A. Lukinov, 2015: Two-dimensional analytical model of dry air thermal convection. Meteor. Atmos. Phys., 127, 451455, https://doi.org/10.1007/s00703-015-0368-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 411 0 0
Full Text Views 1557 879 426
PDF Downloads 629 143 4