The Response of the Near-Surface Tropical Cyclone Wind Field to Inland Surface Roughness Length and Soil Moisture Content during and after Landfall

James Hlywiak Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Miami, Florida

Search for other papers by James Hlywiak in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-8346-1002
and
David S. Nolan Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Miami, Florida

Search for other papers by David S. Nolan in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

The sensitivity of the inland wind decay to realistic inland surface roughness lengths and soil moisture contents is evaluated for strong, idealized tropical cyclones (TCs) of category 4 strength making landfall. Results show that the relative sensitivities to roughness and moisture differ throughout the decay process, and are dependent on the strength and size of the vortex. First, within 12 h of landfall, intense winds at the surface decay rapidly in reaction to the sudden change in surface roughness and decreasing enthalpy fluxes. Wind speeds above the boundary layer decay at a slower rate. Differences in soil moisture contents minimally affect intensity during the first 12 h, as the enhancement of latent heat fluxes from high moisture contents is countered by enhanced surface cooling. After TCs decay to tropical storm intensities, weakening slows and the sensitivity of the intensity decay to soil moisture increases. Increased latent heating becomes significant enough to combat surface temperature cooling, resulting in enhanced convection outside of the expanding radius of maximum winds. This supports a slower decay. Additionally, the decay of the radial wind profile by quadrant is highly asymmetric, as the rear and left-of-motion quadrants decay the fastest. Increasing surface roughness accelerates the decay of the strongest winds, while increasing soil moisture slows the decay of the larger TC wind field. Results have implications for inland forecasting of TC winds and understanding the potential for damage.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: James Hlywiak, jhlywiak@rsmas.miami.edu

Abstract

The sensitivity of the inland wind decay to realistic inland surface roughness lengths and soil moisture contents is evaluated for strong, idealized tropical cyclones (TCs) of category 4 strength making landfall. Results show that the relative sensitivities to roughness and moisture differ throughout the decay process, and are dependent on the strength and size of the vortex. First, within 12 h of landfall, intense winds at the surface decay rapidly in reaction to the sudden change in surface roughness and decreasing enthalpy fluxes. Wind speeds above the boundary layer decay at a slower rate. Differences in soil moisture contents minimally affect intensity during the first 12 h, as the enhancement of latent heat fluxes from high moisture contents is countered by enhanced surface cooling. After TCs decay to tropical storm intensities, weakening slows and the sensitivity of the intensity decay to soil moisture increases. Increased latent heating becomes significant enough to combat surface temperature cooling, resulting in enhanced convection outside of the expanding radius of maximum winds. This supports a slower decay. Additionally, the decay of the radial wind profile by quadrant is highly asymmetric, as the rear and left-of-motion quadrants decay the fastest. Increasing surface roughness accelerates the decay of the strongest winds, while increasing soil moisture slows the decay of the larger TC wind field. Results have implications for inland forecasting of TC winds and understanding the potential for damage.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: James Hlywiak, jhlywiak@rsmas.miami.edu
Save
  • Alford, A. A., M. I. Biggerstaff, G. D. Carrie, J. L. Schroeder, B. D. Hirth, and S. M. Waugh, 2019: Near-surface maximum winds during the landfall of Hurricane Harvey. Geophys. Res. Lett., 46, 973982, https://doi.org/10.1029/2018GL080013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alford, A. A., J. A. Zhang, M. I. Biggerstaff, P. Dodge, F. D. Marks, and D. J. Bodine, 2020: Transition of the hurricane boundary layer during the landfall of Hurricane Irene (2011). J. Atmos. Sci., 77, 35093531, https://doi.org/10.1175/JAS-D-19-0290.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andersen, T. K., and J. M. Shepherd, 2014: A global spatiotemporal analysis of inland tropical cyclone maintenance or intensification. Int. J. Climatol., 34, 391402, https://doi.org/10.1002/joc.3693.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bender, M. A., R. E. Tuleya, and Y. Kurihara, 1987: A numerical study of the effect of island terrain on tropical cyclones. Mon. Wea. Rev., 115, 130155, https://doi.org/10.1175/1520-0493(1987)115<0130:ANSOTE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bozeman, M. L., D. Niyogi, S. Gopalakrishnan, F. D. Marks, X. Zhang, and V. Tallapragada, 2012: An HWRF-based ensemble assessment of the land surface feedback on the post-landfall intensification of Tropical Storm Fay (2008). Nat. Hazards, 63, 15431571, https://doi.org/10.1007/s11069-011-9841-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585, https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, J., and D. R. Chavas, 2020: The transient responses of an axisymmetric tropical cyclone to instantaneous surface roughening and drying. J. Atmos. Sci., 77, 28072834, https://doi.org/10.1175/JAS-D-19-0320.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Y., and M. K. Yau, 2003: Asymmetric structures in a simulated landfalling hurricane. J. Atmos. Sci., 60, 22942312, https://doi.org/10.1175/1520-0469(2003)060<2294:ASIASL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colette, A., N. Leith, V. Daniel, E. Bellone, and D. S. Nolan, 2010: Using mesoscale simulations to train statistical models of tropical cyclone intensity over land. Mon. Wea. Rev., 138, 20582073, https://doi.org/10.1175/2010MWR3079.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMaria, M., M. Mainelli, L. K. Shay, J. A. Knaff, and J. Kaplan, 2005: Further improvements to the Statistical Hurricane Intensity Prediction Scheme (SHIPS). Wea. Forecasting, 20, 531543, https://doi.org/10.1175/WAF862.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMaria, M., J. A. Knaff, and J. Kaplan, 2006: On the decay of tropical cyclone winds crossing narrow landmasses. J. Appl. Meteor. Climatol., 45, 491499, https://doi.org/10.1175/JAM2351.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dudhia, J., and Coauthors, 2008: Prediction of Atlantic tropical cyclones with the Advanced Hurricane WRF (AHW) Model. 28th Conf. on Hurricanes and Tropical Meteorology, Orlando, FL, Amer. Meteor. Soc., 18A.2, https://ams.confex.com/ams/28Hurricanes/techprogram/paper_138004.htm.

  • Dunion, J. P., 2011: Rewriting the climatology of the tropical North Atlantic and Caribbean Sea atmosphere. J. Climate, 24, 893908, https://doi.org/10.1175/2010JCLI3496.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eliassen, A., 1971: On the Ekman layer in a circular vortex. J. Meteor. Soc. Japan, 49A, 784789, https://doi.org/10.2151/jmsj1965.49A.0_784.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K., J. Callaghan, and P. Otto, 2008: A hypothesis for the redevelopment of warm-core cyclones over northern Australia. Mon. Wea. Rev., 136, 38633872, https://doi.org/10.1175/2008MWR2409.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evans, C., R. S. Schumacher, and T. J. Galarneau, 2011: Sensitivity in the overland reintensification of Tropical Cyclone Erin (2007) to near-surface soil moisture characteristics. Mon. Wea. Rev., 139, 38483870, https://doi.org/10.1175/2011MWR3593.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evans, C., and Coauthors, 2017: The extratropical transition of tropical cyclones. Part I: Cyclone evolution and direct impacts. Mon. Wea. Rev., 145, 43174344, https://doi.org/10.1175/MWR-D-17-0027.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giammanco, I. M., J. L. Schroeder, and M. D. Powell, 2012: Observed characteristics of tropical cyclone vertical wind profiles. Wind Struct., 15, 6586, http://doi.org/10.12989/was.2012.15.1.065.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S. Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, https://doi.org/10.1175/MWR3199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janjić, Z., 2002: Nonsingular implementation of the Mellor-Yamada level 2.5 scheme in the NCEP Meso model. NCEP Office Note 437, 61 pp., http://www.emc.ncep.noaa.gov/officenotes/newernotes/on437.pdf.

  • Jordan, C. L., 1958: Mean soundings for the West Indies area. J. Atmos. Sci., 15, 9197, https://doi.org/10.1175/1520-0469(1958)015<0091:MSFTWI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kaplan, J., and M. DeMaria, 1995: A simple empirical model for predicting the decay of tropical cyclone winds after landfall. J. Appl. Meteor. Climatol., 34, 24992512, https://doi.org/10.1175/1520-0450(1995)034<2499:ASEMFP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaplan, J., and M. Demaria, 2001: On the decay of tropical cyclone winds after landfall in the New England area. J. Appl. Meteor., 40, 280286, https://doi.org/10.1175/1520-0450(2001)040<0280:OTDOTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kellner, O., D. Niyogi, M. Lei, and A. Kumar, 2012: The role of anomalous soil moisture on the inland reintensification of Tropical Storm Erin (2007). Nat. Hazards, 63, 15731600, https://doi.org/10.1007/s11069-011-9966-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kepert, J. D., J. Schwendike, and H. Ramsay, 2016: Why is the tropical cyclone boundary layer not “well mixed”? J. Atmos. Sci., 73, 957973, https://doi.org/10.1175/JAS-D-15-0216.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kilroy, G., R. K. Smith, and M. T. Montgomery, 2016a: Why do model tropical cyclones grow progressively in size and decay in intensity after reaching maturity? J. Atmos. Sci., 73, 487503, https://doi.org/10.1175/JAS-D-15-0157.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kilroy, G., R. K. Smith, M. T. Montgomery, B. Lynch, and C. Earl-Spurr, 2016b: A case-study of a monsoon low that formed over the sea and intensified over land as seen in ECMWF analyses. Quart. J. Roy. Meteor. Soc., 142, 22442255, https://doi.org/10.1002/qj.2814.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kishtawal, C. M., D. Niyogi, A. Kumar, M. L. Bozeman, and O. Kellner, 2012: Sensitivity of inland decay of North Atlantic tropical cyclones to soil parameters. Nat. Hazards, 63, 15271542, https://doi.org/10.1007/s11069-011-0015-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knupp, K. R., J. Walters, and M. Biggerstaff, 2006: Doppler profiler and radar observations of boundary layer variability during the landfall of Tropical Storm Gabrielle. J. Atmos. Sci., 63, 234251, https://doi.org/10.1175/JAS3608.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kosiba, K. A., and J. Wurman, 2014: Finescale dual-Doppler analysis of hurricane boundary layer structures in Hurricane Frances (2004) at landfall. Mon. Wea. Rev., 142, 18741891, https://doi.org/10.1175/MWR-D-13-00178.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., 2018: A global slowdown of tropical-cyclone translation speed. Nature, 558, 104107, https://doi.org/10.1038/s41586-018-0158-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krupar, R. J., J. L. Schroeder, D. A. Smith, S. L. Kang, and S. Lorsolo, 2016: A comparison of ASOS near-surface winds and WSR-88D-derived wind speed profiles measured in landfalling tropical cyclones. Wea. Forecasting, 31, 13431361, https://doi.org/10.1175/WAF-D-15-0162.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leroux, M.-D., and Coauthors, 2018: Recent advances in research and forecasting of tropical cyclone track, intensity, and structure at landfall. Trop. Cyclone Res. Rev., 7, 85105, https://doi.org/10.6057/2018TCRR02.02.

    • Search Google Scholar
    • Export Citation
  • Lim, J. O. J., and S. Y. Hong, 2005: Effects of bulk ice microphysics on the simulated monsoonal precipitation over East Asia. J. Geophys. Res., 110, D24201, https://doi.org/10.1029/2005JD006166.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marks, F. D., and Coauthors, 1998: Landfalling tropical cyclones: Forecast problems and associated research opportunities. Bull. Amer. Meteor. Soc., 79, 305323, https://doi.org/10.1175/1520-0477(1998)079<0305:LTCFPA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Masters, F. J., H. W. Tieleman, and J. A. Balderrama, 2010: Surface wind measurements in three Gulf Coast hurricanes of 2005. J. Wind Eng. Ind. Aerodyn., 98, 533547, https://doi.org/10.1016/j.jweia.2010.04.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, B. I., 1964: A study of the filling of Hurricane Donna (1960) over land. Mon. Wea. Rev., 92, 389406, https://doi.org/10.1175/1520-0493(1964)092<0389:ASOTFO>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., H. D. Snell, and Z. Yang, 2001: Axisymmetric spindown dynamics of hurricane-like vortices. J. Atmos. Sci., 58, 421435, https://doi.org/10.1175/1520-0469(2001)058<0421:ASDOHL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., N. Van Sang, R. K. Smith, and J. Persing, 2009: Do tropical cyclones intensify by WISHE? Quart. J. Roy. Meteor. Soc., 135, 16971714, https://doi.org/10.1002/qj.459.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nguyen, L. T., J. Molinari, and D. Thomas, 2014: Evaluation of tropical cyclone center identification methods in numerical models. Mon. Wea. Rev., 142, 43264339, https://doi.org/10.1175/MWR-D-14-00044.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., 2011: Evaluating environmental favorableness for tropical cyclone development with the method of point-downscaling. J. Adv. Model. Earth Syst., 3, M08001, https://doi.org/10.1029/2011MS000063.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Onderlinde, M. J., and D. S. Nolan, 2017: The tropical cyclone response to changing wind shear using the method of time-varying point-downscaling. J. Adv. Model. Earth Syst., 9, 908931, https://doi.org/10.1002/2016MS000796.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ooyama, K., 1969: Numerical simulation of the life cycle of tropical cyclones. J. Atmos. Sci., 26, 340, https://doi.org/10.1175/1520-0469(1969)026<0003:NSOTLC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pollard, R. T., P. B. Rhines, and R. O. Thompson, 1972: The deepening of the wind-mixed layer. Geophys. Astrophys. Fluid Dyn., 4, 381404, https://doi.org/10.1080/03091927208236105.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Powell, M. D., and T. A. Reinhold, 2007: Tropical cyclone destructive potential by integrated kinetic energy. Bull. Amer. Meteor. Soc., 88, 513526, https://doi.org/10.1175/BAMS-88-4-513.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Powell, M. D., P. J. Vickery, and T. A. Reinhold, 2003: Reduced drag coefficient for high wind speeds in tropical cyclones. Nature, 422, 279283, https://doi.org/10.1038/nature01481.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schubert, W. H., and J. H. Hack, 1982: Inertial stability and tropical cyclone development. J. Atmos. Sci., 39, 16871697, https://doi.org/10.1175/1520-0469(1982)039<1687:ISATCD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shen, W., I. Ginis, and R. E. Tuleya, 2002: A numerical investigation of land surface water on landfalling hurricanes. J. Atmos. Sci., 59, 789802, https://doi.org/10.1175/1520-0469(2002)059<0789:ANIOLS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. K., and M. T. Montgomery, 2010: Hurricane boundary-layer theory. Quart. J. Roy. Meteor. Soc., 136, 16651670, https://doi.org/10.1002/qj.679.

  • Tang, S., R. K. Smith, M. T. Montgomery, and M. Gu, 2016: Numerical study of the spin-up of a tropical low over land during the Australian monsoon. Quart. J. Roy. Meteor. Soc., 142, 20212032, https://doi.org/10.1002/qj.2797.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tuleya, R. E., 1994: Tropical storm development and decay: Sensitivity to surface boundary conditions. Mon. Wea. Rev., 122, 291304, https://doi.org/10.1175/1520-0493(1994)122<0291:TSDADS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vickery, P. J., 2005: Simple empirical models for estimating the increase in the central pressure of tropical cyclones after landfall along the coastline of the United States. J. Appl. Meteor., 44, 18071826, https://doi.org/10.1175/JAM2310.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vigh, J. L., and W. H. Schubert, 2009: Rapid development of the tropical cyclone warm core. J. Atmos. Sci., 66, 33353350, https://doi.org/10.1175/2009JAS3092.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wiernga, J., 1993: Representative roughness parameters for homogeneous terrain. Bound.-Layer Meteor., 63, 323363, https://doi.org/10.1007/BF00705357.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, G. J., 2019: Idealized simulations of the inner core boundary layer structure in a landfalling tropical cyclone. Part I: Kinematic structure. Trop. Cyclone Res. Rev., 8, 4767, https://doi.org/10.1016/j.tcrr.2019.07.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wong, M. L., J. C. Chan, and W. Zhou, 2008: A simple empirical model for estimating the intensity change of tropical cyclones after landfall along the south China coast. J. Appl. Meteor. Climatol., 47, 326338, https://doi.org/10.1175/2007JAMC1633.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, C. C., H. J. Cheng, Y. Wang, and K. H. Chou, 2009: A numerical investigation of the eyewall evolution in a landfalling typhoon. Mon. Wea. Rev., 137, 2140, https://doi.org/10.1175/2008MWR2516.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yablonsky, R. M., and I. Ginis, 2009: Limitation of one-dimensional ocean models for coupled hurricane–ocean model forecasts. Mon. Wea. Rev., 137, 44104419, https://doi.org/10.1175/2009MWR2863.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, M. J., S. A. Braun, and D. S. Chen, 2011: Water budget of Typhoon Nari (2001). Mon. Wea. Rev., 139, 38093828, https://doi.org/10.1175/MWR-D-10-05090.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, C., Y. Wang, and K. Hamilton, 2011: Improved representation of boundary layer clouds over the southeast pacific in ARW-WRF using a modified Tiedtke cumulus parameterization scheme. Mon. Wea. Rev., 139, 34893513, https://doi.org/10.1175/MWR-D-10-05091.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, F., and Z. Pu, 2017: Effects of vertical eddy diffusivity parameterization on the evolution of landfalling hurricanes. J. Atmos. Sci., 74, 18791905, https://doi.org/10.1175/JAS-D-16-0214.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., R. F. Rogers, D. S. Nolan, and F. D. Marks, 2011a: On the characteristic height scales of the hurricane boundary layer. Mon. Wea. Rev., 139, 25232535, https://doi.org/10.1175/MWR-D-10-05017.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., P. Zhu, F. J. Masters, R. F. Rogers, and F. D. Marks, 2011b: On momentum transport and dissipative heating during hurricane landfalls. J. Atmos. Sci., 68, 13971404, https://doi.org/10.1175/JAS-D-10-05018.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 690 0 0
Full Text Views 1634 536 99
PDF Downloads 1279 340 19