Revisiting the Quasi-Biennial Oscillation as Seen in ERA5. Part I: Description and Momentum Budget

Hamid A. Pahlavan Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by Hamid A. Pahlavan in
Current site
Google Scholar
PubMed
Close
,
Qiang Fu Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by Qiang Fu in
Current site
Google Scholar
PubMed
Close
,
John M. Wallace Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by John M. Wallace in
Current site
Google Scholar
PubMed
Close
, and
George N. Kiladis NOAA/Physical Sciences Laboratory, Boulder, Colorado

Search for other papers by George N. Kiladis in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

The dynamics and momentum budget of the quasi-biennial oscillation (QBO) are examined in ERA5. Because of ERA5’s higher spatial resolution compared to its predecessors, it is capable of resolving a broader spectrum of atmospheric waves and allows for a better representation of the wave–mean flow interactions, both of which are of crucial importance for QBO studies. It is shown that the QBO-induced mean meridional circulation, which is mainly confined to the winter hemisphere, is strong enough to interrupt the tropical upwelling during the descent of the westerly shear zones. Since the momentum advection tends to damp the QBO, the wave forcing is responsible for both the downward propagation and for the maintenance of the QBO. It is shown that half the required wave forcing is provided by resolved waves during the descent of both westerly and easterly regimes. Planetary-scale waves account for most of the resolved wave forcing of the descent of westerly shear zones and small-scale gravity (SSG) waves with wavelengths shorter than 2000 km account for the remainder. SSG waves account for most of the resolved forcing of the descent of the easterly shear zones. The representation of the mean fields in the QBO is very similar in ERA5 and ERA-Interim but the resolved wave forcing is substantially stronger in ERA5. The contributions of the various equatorially trapped wave modes to the QBO forcing are documented in Part II.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JAS-D-20-0248.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Hamid A. Pahlavan, pahlavan@uw.edu

This article has a companion article which can be found at http://journals.ametsoc.org/doi/abs/10.1175/JAS-D-20-0249.1.

Abstract

The dynamics and momentum budget of the quasi-biennial oscillation (QBO) are examined in ERA5. Because of ERA5’s higher spatial resolution compared to its predecessors, it is capable of resolving a broader spectrum of atmospheric waves and allows for a better representation of the wave–mean flow interactions, both of which are of crucial importance for QBO studies. It is shown that the QBO-induced mean meridional circulation, which is mainly confined to the winter hemisphere, is strong enough to interrupt the tropical upwelling during the descent of the westerly shear zones. Since the momentum advection tends to damp the QBO, the wave forcing is responsible for both the downward propagation and for the maintenance of the QBO. It is shown that half the required wave forcing is provided by resolved waves during the descent of both westerly and easterly regimes. Planetary-scale waves account for most of the resolved wave forcing of the descent of westerly shear zones and small-scale gravity (SSG) waves with wavelengths shorter than 2000 km account for the remainder. SSG waves account for most of the resolved forcing of the descent of the easterly shear zones. The representation of the mean fields in the QBO is very similar in ERA5 and ERA-Interim but the resolved wave forcing is substantially stronger in ERA5. The contributions of the various equatorially trapped wave modes to the QBO forcing are documented in Part II.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JAS-D-20-0248.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Hamid A. Pahlavan, pahlavan@uw.edu

This article has a companion article which can be found at http://journals.ametsoc.org/doi/abs/10.1175/JAS-D-20-0249.1.

Supplementary Materials

    • Supplemental Materials (PDF 3.25 MB)
Save
  • Andrews, D. G., and M. F. McIntyre, 1976: Planetary waves in horizontal and vertical shear: Asymptotic theory for equatorial waves in weak shear. J. Atmos. Sci., 33, 20492053, https://doi.org/10.1175/1520-0469(1976)033<2049:PWIHAV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andrews, D. G., J. D. Mahlman, and R. W. Sinclair, 1983: Eliassen-Palm diagnostics of wave–mean flow interaction in the GFDL “SKYHI” general circulation model. J. Atmos. Sci., 40, 27682784, https://doi.org/10.1175/1520-0469(1983)040<2768:ETWATM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andrews, D. G., C. B. Leovy, and J. R. Holton, 1987: Middle Atmosphere Dynamics. Academic Press, 489 pp.

  • Angell, J. K., and J. Korshover, 1964: Quasi-biennial variations in temperature, total ozone, and tropopause height. J. Atmos. Sci., 21, 479492, https://doi.org/10.1175/1520-0469(1964)021<0479:QBVITT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baldwin, M. P., and Coauthors, 2001: The quasi-biennial oscillation. Rev. Geophys., 39, 179229, https://doi.org/10.1029/1999RG000073.

  • Booker, J. R., and F. P. Bretherton, 1967: The critical layer for internal gravity waves in a shear flow. J. Fluid Mech., 27, 513539, https://doi.org/10.1017/S0022112067000515.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, F. P., 1969: Momentum transport by gravity waves. Quart. J. Roy. Meteor. Soc., 95, 213243, https://doi.org/10.1002/qj.49709540402.

  • Brewer, A. W., 1949: Evidence for a world circulation provided by the measurements of helium and water vapour distribution in the stratosphere. Quart. J. Roy. Meteor. Soc., 75, 351363, https://doi.org/10.1002/qj.49707532603.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collimore, C. C., D. W. Martin, M. H. Hitchman, A. Huesmann, and D. E. Waliser, 2003: On the relationship between the QBO and tropical deep convection. J. Climate, 16, 25522568, https://doi.org/10.1175/1520-0442(2003)016<2552:OTRBTQ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coy, L., K. Wargan, A. M. Molod, W. R. McCarty, and S. Pawson, 2016: Structure and dynamics of the quasi-biennial oscillation in MERRA-2. J. Climate, 29, 53395354, https://doi.org/10.1175/JCLI-D-15-0809.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delisi, D. P., and T. J. Dunkerton, 1988: Seasonal variation of the semiannual oscillation. J. Atmos. Sci., 45, 27722787, https://doi.org/10.1175/1520-0469(1988)045<2772:SVOTSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Q., and Q. Fu, 2018: A warming tropical central Pacific dries the lower stratosphere. Climate Dyn., 50, 28132827, https://doi.org/10.1007/s00382-017-3774-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunkerton, T. J., 1997: The role of gravity waves in the quasi-biennial oscillation. J. Geophys. Res., 102, 26 05326 076, https://doi.org/10.1029/96JD02999.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunkerton, T. J., 2017: Nearly identical cycles of the quasi-biennial oscillation in the equatorial lower stratosphere. J. Geophys. Res. Atmos., 122, 84678493, https://doi.org/10.1002/2017JD026542.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunkerton, T. J., and D. P. Delisi, 1997: Interaction of the quasi-biennial oscillation and stratopause semiannual oscillation. J. Geophys. Res., 102, 26 10726 116, https://doi.org/10.1029/96JD03678.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ern, M., and P. Preusse, 2009a: Quantification of the contribution of equatorial Kelvin waves to the QBO wind reversal in the stratosphere. Geophys. Res. Lett., 36, L21801, https://doi.org/10.1029/2009GL040493.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ern, M., and P. Preusse, 2009b: Wave fluxes of equatorial Kelvin waves and QBO zonal wind forcing derived from SABER and ECMWF temperature space-time spectra. Atmos. Chem. Phys., 9, 39573986, https://doi.org/10.5194/acp-9-3957-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ern, M., and Coauthors, 2014: Interaction of gravity waves with the QBO: A satellite perspective. J. Geophys. Res. Atmos., 119, 23292355, https://doi.org/10.1002/2013JD020731.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fleming, E. L., C. H. Jackman, J. E. Rosenfield, and D. B. Considine, 2002: Two-dimensional model simulations of the QBO in ozone and tracers in the tropical stratosphere. J. Geophys. Res., 107, 4665, https://doi.org/10.1029/2001JD001146.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fueglistaler, S., and P. H. Haynes, 2005: Control of interannual and longer-term variability of stratospheric water vapor. J. Geophys. Res., 110, D24108, https://doi.org/10.1029/2005JD006019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garcia, R. R., and J. H. Richter, 2019: On the momentum budget of the quasi-biennial oscillation in the Whole Atmosphere Community Climate Model. J. Atmos. Sci., 76, 6987, https://doi.org/10.1175/JAS-D-18-0088.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garcia, R. R., T. J. Dunkerton, R. S. Lieberman, and R. A. Vincent, 1997: Climatology of the semiannual oscillation of the tropical middle atmosphere. J. Geophys. Res., 102, 26 01926 032, https://doi.org/10.1029/97JD00207.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geller, M. A., X. Zhou, and M. Zhang, 2002: Simulations of the interannual variability of stratospheric water vapor. J. Atmos. Sci., 59, 10761085, https://doi.org/10.1175/1520-0469(2002)059<1076:SOTIVO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giorgetta, M. A., and L. Bengtsson, 1999: Potential role of the quasi-biennial oscillation in the stratosphere-troposphere exchange as found in water vapor in general circulation model experiments. J. Geophys. Res., 104, 60036019, https://doi.org/10.1029/1998JD200112.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giorgetta, M. A., E. Manzini, and E. Roeckner, 2002: Forcing of the quasi-biennial oscillation from a broad spectrum of atmospheric waves. Geophys. Res. Lett., 29, 1245, https://doi.org/10.1029/2002GL014756.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giorgetta, M. A., E. Manzini, E. Roeckner, M. Esch, and L. Bengtsson, 2006: Climatology and forcing of the quasi-biennial oscillation in the MAECHAM5 model. J. Climate, 19, 38823901, https://doi.org/10.1175/JCLI3830.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamilton, K., 1984: Mean wind evolution through the quasi-biennial cycle in the tropical lower stratosphere. J. Atmos. Sci., 41, 21132125, https://doi.org/10.1175/1520-0469(1984)041<2113:MWETTQ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamilton, K., R. J. Wilson, and R. S. Hemler, 2001: Spontaneous stratospheric QBO-like oscillations simulated by the GFDL SKYHI general circulation model. J. Atmos. Sci., 58, 32713292, https://doi.org/10.1175/1520-0469(2001)058<3271:SSQLOS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hampson, J., and P. Haynes, 2004: Phase alignment of the tropical stratospheric QBO in the annual cycle. J. Atmos. Sci., 61, 26272637, https://doi.org/10.1175/JAS3276.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., L. A. Moy, and Q. Fu, 2001: Tropical convection and the energy balance at the top of the atmosphere. J. Climate, 14, 44954511, https://doi.org/10.1175/1520-0442(2001)014<4495:TCATEB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

  • Hitchman, M. H., and A. S. Huesmann, 2007: A seasonal climatology of Rossby wave breaking in the 320–2000-K layer. J. Atmos. Sci., 64, 19221940, https://doi.org/10.1175/JAS3927.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoffmann, L., and Coauthors, 2019: From ERA-Interim to ERA5: The considerable impact of ECMWF’s next-generation reanalysis on Lagrangian transport simulations. Atmos. Chem. Phys., 19, 30973124, https://doi.org/10.5194/acp-19-3097-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holt, L. A., M. J. Alexander, L. Coy, A. Molod, W. Putman, and S. Pawson, 2016: Tropical waves and the quasi-biennial oscillation in a 7-km global climate simulation. J. Atmos. Sci., 73, 37713783, https://doi.org/10.1175/JAS-D-15-0350.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holt, L. A., and Coauthors, 2021: An evaluation of tropical waves and wave forcing of the QBO in the QBOi models. Quart. J. Roy. Meteor. Soc., https://doi.org/10.1002/qj.3827, in press.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 1989: Influence of the annual cycle in meridional transport on the quasi-biennial oscillation in total ozone. J. Atmos. Sci., 46, 14341439, https://doi.org/10.1175/1520-0469(1989)046<1434:IOTACI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holton, J. R., and R. S. Lindzen, 1972: An updated theory for the quasi-biennial cycle of the tropical stratosphere. J. Atmos. Sci., 29, 10761080, https://doi.org/10.1175/1520-0469(1972)029<1076:AUTFTQ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holton, J. R., and W. M. Wehrbein, 1980: A numerical model of the zonal mean circulation of the middle atmosphere. Pure Appl. Geophys., 118, 284306, https://doi.org/10.1007/BF01586455.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kawatani, Y., S. Watanabe, K. Sato, T. J. Dunkerton, S. Miyahara, and M. Takahashi, 2010a: The roles of equatorial trapped waves and internal inertia–gravity waves in driving the quasi-biennial oscillation. Part I: Zonal mean wave forcing. J. Atmos. Sci., 67, 963980, https://doi.org/10.1175/2009JAS3222.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kawatani, Y., S. Watanabe, K. Sato, T. J. Dunkerton, S. Miyahara, and M. Takahashi, 2010b: The roles of equatorial trapped waves and internal inertia–gravity waves in driving the quasi-biennial oscillation. Part II: Three-dimensional distribution of wave forcing. J. Atmos. Sci., 67, 981997, https://doi.org/10.1175/2009JAS3223.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kawatani, Y., J. N. Lee, and K. Hamilton, 2014: Interannual variations of stratospheric water vapor in MLS observations and climate model simulations. J. Atmos. Sci., 71, 40724085, https://doi.org/10.1175/JAS-D-14-0164.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, Y.-H., and H.-Y. Chun, 2015: Momentum forcing of the quasi-biennial oscillation by equatorial waves in recent reanalyses. Atmos. Chem. Phys., 15, 6577–6587, https://doi.org/10.5194/acp-15-6577-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kinnersley, J. S., and S. Pawson, 1996: The descent rates of the shear zones of the equatorial QBO. J. Atmos. Sci., 53, 19371949, https://doi.org/10.1175/1520-0469(1996)053<1937:TDROTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krismer, T. R., M. A. Giorgetta, and M. Esch, 2013: Seasonal aspects of the quasi-biennial oscillation in the Max Planck Institute Earth System Model and ERA-40. J. Adv. Model. Earth Syst., 5, 406421, https://doi.org/10.1002/jame.20024.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lambert, A., and Coauthors, 2007: Validation of the Aura Microwave Limb Sounder stratospheric water vapor and nitrous oxide measurements. J. Geophys. Res., 112, D24S36, https://doi.org/10.1029/2007JD008724.

    • Search Google Scholar
    • Export Citation
  • Liess, S., and M. A. Geller, 2012: On the relationship between QBO and distribution of tropical deep convection. J. Geophys. Res., 117, D03108, https://doi.org/10.1029/2011JD016317.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, L., Q. Fu, H. Zhang, J. Su, Q. Yang, and Z. Sun, 2013: Upward mass fluxes in tropical upper troposphere and lower stratosphere derived from radiative transfer calculations. J. Quant. Spectrosc. Radiat. Transfer, 117, 114122, https://doi.org/10.1016/j.jqsrt.2012.11.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., and J. R. Holton, 1968: A theory of the quasi-biennial oscillation. J. Atmos. Sci., 25, 10951107, https://doi.org/10.1175/1520-0469(1968)025<1095:ATOTQB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Livesey, N. J., and Coauthors, 2008: Validation of Aura Microwave Limb Sounder O3 and CO observations in the upper troposphere and lower stratosphere. J. Geophys. Res., 113, D15S02, https://doi.org/10.1029/2007JD008805.

    • Search Google Scholar
    • Export Citation
  • Maruyama, T., 1991: Annual and QBO-synchronized variations of lower-stratospheric equatorial wave activity over Singapore during 1961-1989. J. Meteor. Soc. Japan, 69, 219232, https://doi.org/10.2151/jmsj1965.69.2_219.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Match, A., and S. Fueglistaler, 2019: The buffer zone of the quasi-biennial oscillation. J. Atmos. Sci., 76, 35533567, https://doi.org/10.1175/JAS-D-19-0151.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mayr, H. G., J. G. Mengel, K. L. Chan, and F. T. Huang, 2010: Middle atmosphere dynamics with gravity wave interactions in the numerical spectral model: Zonal-mean variations. J. Atmos. Sol.-Terr. Phys., 72, 807828, https://doi.org/10.1016/j.jastp.2010.03.018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molod, A., L. Takacs, M. Suarez, and J. Bacmeister, 2015: Development of the GEOS-5 atmospheric general circulation model: Evolution from MERRA to MERRA2. Geosci. Model Dev., 8, 13391356, https://doi.org/10.5194/gmd-8-1339-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mote, P. W., and Coauthors, 1996: An atmospheric tape recorder: The imprint of tropical tropopause temperatures on stratospheric water vapor. J. Geophys. Res., 101, 39894006, https://doi.org/10.1029/95JD03422.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Orr, A., P. Bechtold, J. Scinocca, M. Ern, and M. Janiskova, 2010: Improved middle atmosphere climate and forecasts in the ECMWF model through a nonorographic gravity wave drag parameterization. J. Climate, 23, 59055926, https://doi.org/10.1175/2010JCLI3490.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pahlavan, H. A., J. M. Wallace, Q. Fu, and G. N. Kiladis, 2021: Revisiting the quasi-biennial oscillation as seen in ERA5. Part II: Evaluation of waves and wave forcing. J. Atmos. Sci., 78, 693707, https://doi.org/10.1175/JAS-D-20-0249.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, M., and Coauthors, 2017: Variability of stratospheric reactive nitrogen and ozone related to the QBO. J. Geophys. Res. Atmos., 122, 10 10310 118, https://doi.org/10.1002/2017JD027061.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pascoe, C. L., L. J. Gray, S. A. Crooks, M. N. Juckes, and M. P. Baldwin, 2005: The quasi-biennial oscillation: Analysis using ERA-40 data. J. Geophys. Res., 110, D08105, https://doi.org/10.1029/2004JD004941.

    • Search Google Scholar
    • Export Citation
  • Pawson, S., and M. Fiorino, 1998: A comparison of reanalyses in the tropical stratosphere. Part 2: The quasi-biennial oscillation. Climate Dyn., 14, 645658, https://doi.org/10.1007/s003820050247.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Plumb, R. A., 1977: The interaction of two internal waves with the mean flow: Implications for the theory of the quasi-biennial oscillation. J. Atmos. Sci., 34, 18471858, https://doi.org/10.1175/1520-0469(1977)034<1847:TIOTIW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Plumb, R. A., and A. D. McEwan, 1978: The instability of a forced standing wave in a viscous stratified fluid: A laboratory analogue of the quasi-biennial oscillation. J. Atmos. Sci., 35, 18271839, https://doi.org/10.1175/1520-0469(1978)035<1827:TIOAFS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Randel, W. J., and F. Wu, 1996: Isolation of the ozone QBO in SAGE II data by singular-value decomposition. J. Atmos. Sci., 53, 25462559, https://doi.org/10.1175/1520-0469(1996)053<2546:IOTOQI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Randel, W. J., F. Wu, J. M. Russell III, A. Roche, and J. W. Waters, 1998: Seasonal cycles and QBO variations in stratospheric CH4 and H2O observed in UARS HALOE data. J. Atmos. Sci., 55, 163185, https://doi.org/10.1175/1520-0469(1998)055<0163:SCAQVI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Randel, W. J., F. Wu, R. Swinbank, J. Nash, and A. O’Neill, 1999: Global QBO circulation derived from UKMO stratospheric analyses. J. Atmos. Sci., 56, 457474, https://doi.org/10.1175/1520-0469(1999)056<0457:GQCDFU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Randel, W. J., F. Wu, and D. J. Gaffen, 2000: Interannual variability of the tropical tropopause derived from radiosonde data and NCEP reanalyses. J. Geophys. Res., 105, 15 50915 523, https://doi.org/10.1029/2000JD900155.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Randel, W. J., R. R. Garcia, and F. Wu, 2002: Time-dependent upwelling in the tropical lower stratosphere estimated from the zonal-mean momentum budget. J. Atmos. Sci., 59, 21412152, https://doi.org/10.1175/1520-0469(2002)059<2141:TDUITT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reed, R. J., 1962: Some features of the annual temperature regime in the tropical stratosphere. Mon. Wea. Rev., 90, 211215, https://doi.org/10.1175/1520-0493(1962)090<0211:SFOTAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reed, R. J., 1964: A tentative model of the 26-month oscillation in tropical latitudes. Quart. J. Roy. Meteor. Soc., 90, 441466, https://doi.org/10.1002/qj.49709038607.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reed, R. J., 1966: Zonal wind behavior in the equatorial stratosphere and lower mesosphere. J. Geophys. Res., 71, 42234233, https://doi.org/10.1029/JZ071i018p04223.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reid, G. C., 1994: Seasonal and interannual temperature variations in the tropical stratosphere. J. Geophys. Res., 99, 18 92318 932, https://doi.org/10.1029/94JD01830.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ribera, P., C. Peña-Ortiz, R. Garcia-Herrera, D. Gallego, L. Gimeno, and E. Hernández, 2004: Detection of the secondary meridional circulation associated with the quasi-biennial oscillation. J. Geophys. Res., 109, D18112, https://doi.org/10.1029/2003JD004363.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schenzinger, V., S. Osprey, L. Gray, and N. Butchart, 2017: Defining metrics of the quasi-biennial oscillation in global climate models. Geosci. Model Dev., 10, 21572168, https://doi.org/10.5194/gmd-10-2157-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schoeberl, M. R., and Coauthors, 2008: QBO and annual cycle variations in tropical lower stratosphere trace gases from HALOE and Aura MLS observations. J. Geophys. Res., 113, D05301, https://doi.org/10.1029/2007JD008678.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., S.-H. Park, J. B. Klemp, and C. Snyder, 2014: Atmospheric kinetic energy spectra from global high-resolution nonhydrostatic simulations. J. Atmos. Sci., 71, 43694381, https://doi.org/10.1175/JAS-D-14-0114.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, A. K., R. R. Garcia, A. C. Moss, and N. J. Mitchell, 2017: The semiannual oscillation of the tropical zonal wind in the middle atmosphere derived from satellite geopotential height retrievals. J. Atmos. Sci., 74, 24132425, https://doi.org/10.1175/JAS-D-17-0067.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swinbank, R., and A. O’Neill, 1994: A stratosphere–troposphere data assimilation system. Mon. Wea. Rev., 122, 686702, https://doi.org/10.1175/1520-0493(1994)122<0686:ASTDAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tseng, H.-H., and Q. Fu, 2017: Temperature control of the variability of tropical tropopause layer cirrus clouds. J. Geophys. Res. Atmos., 122, 11 06211 075, https://doi.org/10.1002/2017JD027093.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., 1967: A note on the role of radiation in the biennial oscillation. J. Atmos. Sci., 24, 598599, https://doi.org/10.1175/1520-0469(1967)024<0598:ANOTRO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., 1973: General circulation of the tropical lower stratosphere. Rev. Geophys., 11, 191222, https://doi.org/10.1029/RG011i002p00191.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Welch, B. L., 1947: The generalization of ‘Student’s’ problem when several different population variances are involved. Biometrika, 34, 2835, https://doi.org/10.2307/2332510.

    • Search Google Scholar
    • Export Citation
  • Winker, D. M., and Coauthors, 2010: The CALIPSO mission: A global 3D view of aerosols and clouds. Bull. Amer. Meteor. Soc., 91, 12111230, https://doi.org/10.1175/2010BAMS3009.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yao, W., and C. Jablonowski, 2015: Idealized quasi-biennial oscillations in an ensemble of dry GCM dynamical cores. J. Atmos. Sci., 72, 22012226, https://doi.org/10.1175/JAS-D-14-0236.1.

    • Crossref
    • Search Google Scholar
    • Export Citation