Revisiting the Quasi-Biennial Oscillation as Seen in ERA5. Part II: Evaluation of Waves and Wave Forcing

Hamid A. Pahlavan Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by Hamid A. Pahlavan in
Current site
Google Scholar
PubMed
Close
,
John M. Wallace Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by John M. Wallace in
Current site
Google Scholar
PubMed
Close
,
Qiang Fu Department of Atmospheric Sciences, University of Washington, Seattle, Washington

Search for other papers by Qiang Fu in
Current site
Google Scholar
PubMed
Close
, and
George N. Kiladis NOAA/Physical Sciences Laboratory, Boulder, Colorado

Search for other papers by George N. Kiladis in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

This paper describes stratospheric waves in ERA5 and evaluates the contributions of different types of waves to the driving of the quasi-biennial oscillation (QBO). Because of its higher spatial resolution compared to its predecessors, ERA5 is capable of resolving a broader spectrum of waves. It is shown that the resolved waves contribute to both eastward and westward accelerations near the equator, mainly by the way of the vertical flux of zonal momentum. The eastward accelerations by the resolved waves are mainly due to Kelvin waves and small-scale gravity (SSG) waves with zonal wavelengths smaller than 2000 km, whereas the westward accelerations are forced mainly by SSG waves, with smaller contributions from inertio-gravity and mixed Rossby–gravity waves. Extratropical Rossby waves disperse upward and equatorward into the tropical region and impart a westward acceleration to the zonal flow. They appear to be responsible for at least some of the irregularities in the QBO cycle.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JAS-D-20-0249.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Hamid A. Pahlavan, pahlavan@uw.edu

This article has a companion article which can be found at http://journals.ametsoc.org/doi/abs/10.1175/JAS-D-20-0248.1.

Abstract

This paper describes stratospheric waves in ERA5 and evaluates the contributions of different types of waves to the driving of the quasi-biennial oscillation (QBO). Because of its higher spatial resolution compared to its predecessors, ERA5 is capable of resolving a broader spectrum of waves. It is shown that the resolved waves contribute to both eastward and westward accelerations near the equator, mainly by the way of the vertical flux of zonal momentum. The eastward accelerations by the resolved waves are mainly due to Kelvin waves and small-scale gravity (SSG) waves with zonal wavelengths smaller than 2000 km, whereas the westward accelerations are forced mainly by SSG waves, with smaller contributions from inertio-gravity and mixed Rossby–gravity waves. Extratropical Rossby waves disperse upward and equatorward into the tropical region and impart a westward acceleration to the zonal flow. They appear to be responsible for at least some of the irregularities in the QBO cycle.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JAS-D-20-0249.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Hamid A. Pahlavan, pahlavan@uw.edu

This article has a companion article which can be found at http://journals.ametsoc.org/doi/abs/10.1175/JAS-D-20-0248.1.

Supplementary Materials

    • Supplemental Materials (PDF 673.91 KB)
Save
  • Alexander, M. J., and D. A. Ortland, 2010: Equatorial waves in High Resolution Dynamics Limb Sounder (HIRDLS) data. J. Geophys. Res., 115, D24111, https://doi.org/10.1029/2010JD014782.

    • Search Google Scholar
    • Export Citation
  • Andrews, D. G., J. D. Mahlman, and R. W. Sinclair, 1983: Eliassen-Palm diagnostics of wave–mean flow interaction in the GFDL “SKYHI” general circulation model. J. Atmos. Sci., 40, 27682784, https://doi.org/10.1175/1520-0469(1983)040<2768:ETWATM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andrews, D. G., C. B. Leovy, and J. R. Holton, 1987: Middle Atmosphere Dynamics. Academic Press, 489 pp.

  • Anstey, J. A., T. P. Banyard, N. Butchart, L. Coy, P. A. Newman, S. Osprey, and C. Wright, 2020: Quasi-biennial oscillation disrupted by abnormal Southern Hemisphere stratosphere. Earth and Space Science Open Archive, accessed 8 July 2020, https://doi.org/10.1002/essoar.10503358.1.

    • Crossref
    • Export Citation
  • Baldwin, M. P., and Coauthors, 2001: The quasi-biennial oscillation. Rev. Geophys., 39, 179229, https://doi.org/10.1029/1999RG000073.

  • Barton, C. A., and J. P. McCormack, 2017: Origin of the 2016 QBO disruption and its relationship to extreme El Niño events. Geophys. Res. Lett., 44, 11150, https://doi.org/10.1002/2017GL075576.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, N. Y., E. P. Gerber, and O. Bühler, 2013: Compensation between resolved and unresolved wave driving in the stratosphere: Implications for downward control. J. Atmos. Sci., 70, 37803798, https://doi.org/10.1175/JAS-D-12-0346.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coy, L., P. A. Newman, S. Pawson, and L. R. Lait, 2017: Dynamics of the disrupted 2015/16 quasi-biennial oscillation. J. Climate, 30, 56615674, https://doi.org/10.1175/JCLI-D-16-0663.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dias, J., and G. N. Kiladis, 2016: The relationship between equatorial mixed Rossby–gravity and eastward inertio-gravity waves. Part II. J. Atmos. Sci., 73, 21472163, https://doi.org/10.1175/JAS-D-15-0231.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dickinson, R. E., 1968: Planetary Rossby waves propagating vertically through weak westerly wind wave guides. J. Atmos. Sci., 25, 9841002, https://doi.org/10.1175/1520-0469(1968)025<0984:PRWPVT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunkerton, T. J., 1983: Laterally-propagating Rossby waves in the easterly acceleration phase of the quasi-biennial oscillation. Atmos.–Ocean, 21, 5568, https://doi.org/10.1080/07055900.1983.9649155.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunkerton, T. J., 1997: The role of gravity waves in the quasi-biennial oscillation. J. Geophys. Res., 102, 26 05326 076, https://doi.org/10.1029/96JD02999.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ern, M., and P. Preusse, 2009a: Quantification of the contribution of equatorial Kelvin waves to the QBO wind reversal in the stratosphere. Geophys. Res. Lett., 36, L21801, https://doi.org/10.1029/2009GL040493.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ern, M., and P. Preusse, 2009b: Wave fluxes of equatorial Kelvin waves and QBO zonal wind forcing derived from SABER and ECMWF temperature space-time spectra. Atmos. Chem. Phys., 9, 39573986, https://doi.org/10.5194/acp-9-3957-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ern, M., and Coauthors, 2014: Interaction of gravity waves with the QBO: A satellite perspective. J. Geophys. Res. Atmos., 119, 23292355, https://doi.org/10.1002/2013JD020731.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evan, S., M. J. Alexander, and J. Dudhia, 2012: WRF simulations of convectively generated gravity waves in opposite QBO phases. J. Geophys. Res. Atmos., 117, D12117, https://doi.org/10.1029/2011JD017302.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garcia, R. R., and J. H. Richter, 2019: On the momentum budget of the quasi-biennial oscillation in the Whole Atmosphere Community Climate Model. J. Atmos. Sci., 76, 6987, https://doi.org/10.1175/JAS-D-18-0088.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giorgetta, M. A., E. Manzini, and E. Roeckner, 2002: Forcing of the quasi-biennial oscillation from a broad spectrum of atmospheric waves. Geophys. Res. Lett., 29, 1245, https://doi.org/10.1029/2002GL014756.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giorgetta, M. A., E. Manzini, E. Roeckner, M. Esch, and L. Bengtsson, 2006: Climatology and forcing of the quasi-biennial oscillation in the MAECHAM5 model. J. Climate, 19, 38823901, https://doi.org/10.1175/JCLI3830.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

  • Holt, L. A., and Coauthors, 2021: An evaluation of tropical waves and wave forcing of the QBO in the QBOi models. Quart. J. Roy. Meteor. Soc., https://doi.org/10.1002/qj.3827, in press.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., and R. S. Lindzen, 1972: An updated theory for the quasi-biennial cycle of the tropical stratosphere. J. Atmos. Sci., 29, 10761080, https://doi.org/10.1175/1520-0469(1972)029<1076:AUTFTQ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kawatani, Y., S. Watanabe, K. Sato, T. J. Dunkerton, S. Miyahara, and M. Takahashi, 2010a: The roles of equatorial trapped waves and internal inertia–gravity waves in driving the quasi-biennial oscillation. Part I: Zonal mean wave forcing. J. Atmos. Sci., 67, 963980, https://doi.org/10.1175/2009JAS3222.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kawatani, Y., S. Watanabe, K. Sato, T. J. Dunkerton, S. Miyahara, and M. Takahashi, 2010b: The roles of equatorial trapped waves and internal inertia–gravity waves in driving the quasi-biennial oscillation. Part II: Three-dimensional distribution of wave forcing. J. Atmos. Sci., 67, 981997, https://doi.org/10.1175/2009JAS3223.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., J. Dias, and M. Gehne, 2016: The relationship between equatorial mixed Rossby–gravity and eastward inertio-gravity waves. Part I. J. Atmos. Sci., 73, 21232145, https://doi.org/10.1175/JAS-D-15-0230.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, Y.-H., and H.-Y. Chun, 2015a: Momentum forcing of the quasi-biennial oscillation by equatorial waves in recent reanalyses. Atmos. Chem. Phys., 15, 65776587, https://doi.org/10.5194/acp-15-6577-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, Y.-H., and H.-Y. Chun, 2015b: Contributions of equatorial wave modes and parameterized gravity waves to the tropical QBO in HadGEM2. J. Geophys. Res. Atmos., 120, 10651090, https://doi.org/10.1002/2014JD022174.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, Y.-H., and Coauthors, 2019: Comparison of equatorial wave activity in the tropical tropopause layer and stratosphere represented in reanalyses. Atmos. Chem. Phys., 19, 10 02710 050, https://doi.org/10.5194/acp-19-10027-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krismer, T. R., M. A. Giorgetta, and M. Esch, 2013: Seasonal aspects of the quasi-biennial oscillation in the Max Planck Institute Earth System Model and ERA-40. J. Adv. Model. Earth Syst., 5, 406421, https://doi.org/10.1002/jame.20024.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, P. I. Held, and Y. Ming, 2019: The early development of the 2015/16 quasi-biennial oscillation disruption. J. Atmos. Sci., 76, 821836, https://doi.org/10.1175/JAS-D-18-0292.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., and J. R. Holton, 1968: A theory of the quasi-biennial oscillation. J. Atmos. Sci., 25, 10951107, https://doi.org/10.1175/1520-0469(1968)025<1095:ATOTQB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lott, F., and Coauthors, 2014: Kelvin and Rossby-gravity wave packets in the lower stratosphere of some high-top CMIP5 models. J. Geophys. Res. Atmos., 119, 21562173, https://doi.org/10.1002/2013JD020797.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan, 44, 2543, https://doi.org/10.2151/jmsj1965.44.1_25.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maury, P., and F. Lott, 2014: On the presence of equatorial waves in the lower stratosphere of a general circulation model. Atmos. Chem. Phys., 14, 18691880, https://doi.org/10.5194/acp-14-1869-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newman, P. A., L. Coy, S. Pawson, and L. R. Lait, 2016: The anomalous change in the QBO in 2015–2016. Geophys. Res. Lett., 43, 87918797, https://doi.org/10.1002/2016GL070373.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Osprey, S. M., N. Butchart, J. R. Knight, A. A. Scaife, K. Hamilton, J. A. Anstey, V. Schenzinger, and C. Zhang, 2016: An unexpected disruption of the atmospheric quasi-biennial oscillation. Science, 353, 14241427, https://doi.org/10.1126/science.aah4156.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pahlavan, H. A., Q. Fu, J. M. Wallace, and G. N. Kiladis, 2021: Revisiting the quasi-biennial oscillation as seen in ERA5. Part I: Description and momentum budget. J. Atmos. Sci., 78, 673691, https://doi.org/10.1175/JAS-D-20-0249.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richter, J. H., J. A. Anstey, N. Butchart, Y. Kawatani, G. A. Meehl, S. Osprey, and I. R. Simpson, 2020: Progress in simulating the quasi-biennial oscillation in CMIP models. J. Geophys. Res. Atmos., 125, e2019JD032362, https://doi.org/10.1029/2019JD032362.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salby, M. L., and R. R. Garcia, 1987: Transient response to localized episodic heating in the tropics. Part I: Excitation and short-time near-field behavior. J. Atmos. Sci., 44, 458498, https://doi.org/10.1175/1520-0469(1987)044<0458:TRTLEH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schenzinger, V., S. Osprey, L. Gray, and N. Butchart, 2017: Defining metrics of the quasi-biennial oscillation in global climate models. Geosci. Model Dev., 10, 21572168, https://doi.org/10.5194/gmd-10-2157-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stephan, C., and M. J. Alexander, 2015: Realistic simulations of atmospheric gravity waves over the continental U.S. using precipitation radar data. J. Adv. Model. Earth Syst., 7, 823835, https://doi.org/10.1002/2014MS000396.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vincent, R. A., and M. J. Alexander, 2020: Observational studies of short vertical wavelength gravity waves and interaction with QBO winds. Earth and Space Science Open Archive, https://doi.org/10.1002/essoar.10502563.1.</prpt>

    • Crossref
    • Export Citation
  • Wheeler, M., and G. N. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber–frequency domain. J. Atmos. Sci., 56, 374399, https://doi.org/10.1175/1520-0469(1999)056<0374:CCEWAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 570 0 0
Full Text Views 2198 703 248
PDF Downloads 1683 332 19