Toward Transient Subgrid-Scale Gravity Wave Representation in Atmospheric Models. Part I: Propagation Model Including Nondissipative Wave–Mean-Flow Interactions

Gergely Bölöni Institut für Atmosphäre und Umwelt, Goethe-Universität Frankfurt am Main, Frankfurt, Germany

Search for other papers by Gergely Bölöni in
Current site
Google Scholar
PubMed
Close
,
Young-Ha Kim Institut für Atmosphäre und Umwelt, Goethe-Universität Frankfurt am Main, Frankfurt, Germany

Search for other papers by Young-Ha Kim in
Current site
Google Scholar
PubMed
Close
,
Sebastian Borchert Deutscher Wetterdienst, Offenbach, Germany

Search for other papers by Sebastian Borchert in
Current site
Google Scholar
PubMed
Close
, and
Ulrich Achatz Institut für Atmosphäre und Umwelt, Goethe-Universität Frankfurt am Main, Frankfurt, Germany

Search for other papers by Ulrich Achatz in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Current gravity wave (GW) parameterization (GWP) schemes are using the steady-state assumption, in which an instantaneous balance between GWs and mean flow is postulated, thereby neglecting transient, nondissipative interactions between the GW field and the resolved flow. These schemes rely exclusively on wave dissipation, by GW breaking or near critical layers, as a mechanism leading to forcing of the mean flow. In a transient GWP, without the steady-state assumption, nondissipative wave–mean-flow interactions are enabled as an additional mechanism. Idealized studies have shown that this is potentially important, and therefore the transient GWP Multiscale Gravity Wave Model (MS-GWaM) has been implemented into a state-of-the-art weather and climate model. In this implementation, MS-GWaM leads to a zonal-mean circulation that agrees well with observations and increases GW momentum-flux intermittency as compared with steady-state GWPs, bringing it into better agreement with superpressure balloon observations. Transient effects taken into account by MS-GWaM are shown to make a difference even on monthly time scales: in comparison with steady-state GWPs momentum fluxes in the lower stratosphere are increased and the amount of missing drag at Southern Hemispheric high latitudes is decreased to a modest but nonnegligible extent. An analysis of the contribution of different wavelengths to the GW signal in MS-GWaM suggests that small-scale GWs play an important role down to horizontal and vertical wavelengths of 50 km (or even smaller) and 200 m, respectively.

Bölöni’s current affiliation: Deutscher Wetterdienst, Offenbach am Main, Germany.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

This article is included in the Multi-Scale Dynamics of Gravity Waves (MS-GWaves) Special Collection.

This article has a companion article which can be found at http://journals.ametsoc.org/doi/abs/10.1175/JAS-D-20-0066.1.

Corresponding author: Gergely Bölöni, gergely.boeloeni@dwd.de

Abstract

Current gravity wave (GW) parameterization (GWP) schemes are using the steady-state assumption, in which an instantaneous balance between GWs and mean flow is postulated, thereby neglecting transient, nondissipative interactions between the GW field and the resolved flow. These schemes rely exclusively on wave dissipation, by GW breaking or near critical layers, as a mechanism leading to forcing of the mean flow. In a transient GWP, without the steady-state assumption, nondissipative wave–mean-flow interactions are enabled as an additional mechanism. Idealized studies have shown that this is potentially important, and therefore the transient GWP Multiscale Gravity Wave Model (MS-GWaM) has been implemented into a state-of-the-art weather and climate model. In this implementation, MS-GWaM leads to a zonal-mean circulation that agrees well with observations and increases GW momentum-flux intermittency as compared with steady-state GWPs, bringing it into better agreement with superpressure balloon observations. Transient effects taken into account by MS-GWaM are shown to make a difference even on monthly time scales: in comparison with steady-state GWPs momentum fluxes in the lower stratosphere are increased and the amount of missing drag at Southern Hemispheric high latitudes is decreased to a modest but nonnegligible extent. An analysis of the contribution of different wavelengths to the GW signal in MS-GWaM suggests that small-scale GWs play an important role down to horizontal and vertical wavelengths of 50 km (or even smaller) and 200 m, respectively.

Bölöni’s current affiliation: Deutscher Wetterdienst, Offenbach am Main, Germany.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

This article is included in the Multi-Scale Dynamics of Gravity Waves (MS-GWaves) Special Collection.

This article has a companion article which can be found at http://journals.ametsoc.org/doi/abs/10.1175/JAS-D-20-0066.1.

Corresponding author: Gergely Bölöni, gergely.boeloeni@dwd.de
Save
  • Achatz, U., B. Ribstein, F. Senf, and R. Klein, 2017: The interaction between synoptic-scale balanced flow and a finite-amplitude mesoscale wave field throughout all atmospheric layers: Weak and moderately strong stratification. Quart. J. Roy. Meteor. Soc., 143, 342361, https://doi.org/10.1002/qj.2926.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alexander, M. J., and T. J. Dunkerton, 1999: A spectral parameterization of mean-flow forcing due to breaking gravity waves. J. Atmos. Sci., 56, 41674182, https://doi.org/10.1175/1520-0469(1999)056<4167:ASPOMF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alexander, M. J., and A. W. Grimsdell, 2013: Seasonal cycle of orographic gravity wave occurrence above small islands in the Southern Hemisphere: Implications for effects on the general circulation. J. Geophys. Res. Atmos., 118, 11 58911 599, https://doi.org/10.1002/2013JD020526.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alexander, M. J., S. D. Eckermann, D. Broutman, and J. Ma, 2009: Momentum flux estimates for South Georgia Island mountain waves in the stratosphere observed via satellite. Geophys. Res. Lett., 36, L12816, https://doi.org/10.1029/2009GL038587.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Amemiya, A., and K. Sato, 2016: A new gravity wave parameterization including three-dimensional propagation. J. Meteor. Soc. Japan, 94, 237256, https://doi.org/10.2151/jmsj.2016-013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andrews, D. G., and M. E. McIntyre, 1976: Planetary waves in horizontal and vertical shear: The generalized Eliassen-Palm relation and the mean zonal acceleration. J. Atmos. Sci., 33, 20312048, https://doi.org/10.1175/1520-0469(1976)033<2031:PWIHAV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andrews, D. G., and M. E. McIntyre, 1978 a: An exact theory of nonlinear waves on a Lagrangian-mean flow. J. Fluid Mech., 89, 609646, https://doi.org/10.1017/S0022112078002773.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andrews, D. G., and M. E. McIntyre, 1978b: Generalized Eliassen-Palm and Charney-Drazin theorems for waves on axisymmetric mean flows in compressible atmospheres. J. Atmos. Sci., 35, 175185, https://doi.org/10.1175/1520-0469(1978)035<0175:GEPACD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Atkins, T., and M. Escudier, 2013: A Dictionary of Mechanical Engineering. Oxford University Press, 448 pp., https://doi.org/10.1093/acref/9780199587438.001.0001.

    • Crossref
    • Export Citation
  • Bacmeister, J., P. Newman, B. Gary, and K. Chan, 1994: An algorithm for forecasting mountain wave–related turbulence in the stratosphere. Wea. Forecasting, 9, 241253, https://doi.org/10.1175/1520-0434(1994)009<0241:AAFFMW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Becker, E., 2017: Mean-flow effects of thermal tides in the mesosphere and lower thermosphere. J. Atmos. Sci., 74, 20432063, https://doi.org/10.1175/JAS-D-16-0194.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beres, J. H., R. R. Garcia, B. A. Boville, and F. Sassi, 2005: Implementation of a gravity wave source spectrum parameterization dependent on the properties of convection in the Whole Atmosphere Community Climate Model (WACCM). J. Geophys. Res., 110, D10108, https://doi.org/10.1029/2004JD005504.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bölöni, G., B. Ribstein, J. Muraschko, C. Sgoff, J. Wei, and U. Achatz, 2016: The interaction between atmospheric gravity waves and large-scale flows: An efficient description beyond the nonacceleration paradigm. J. Atmos. Sci., 73, 48334852, https://doi.org/10.1175/JAS-D-16-0069.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Borchert, S., G. Zhou, M. Baldauf, H. Schmidt, G. Zängl, and D. Reinert, 2019: The upper-atmosphere extension of the ICON general circulation model (version: ua-icon-1.0). Geosci. Model Dev., 12, 35413569, https://doi.org/10.5194/gmd-12-3541-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, F. P., 1966: The propagation of groups of internal gravity waves in a shear flow. Quart. J. Roy. Meteor. Soc., 92, 466480, https://doi.org/10.1002/qj.49709239403.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Broutman, D., J. Ma, S. D. Eckermann, and J. Lindeman, 2006: Fourier-ray modeling of transient trapped lee waves. Mon. Wea. Rev., 134, 28492856, https://doi.org/10.1175/MWR3232.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charron, M., and E. Manzini, 2002: Gravity waves from fronts: Parameterization and middle atmosphere response in a general circulation model. J. Atmos. Sci., 59, 923941, https://doi.org/10.1175/1520-0469(2002)059<0923:GWFFPA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de la Cámara, A., and F. Lott, 2015: A parameterization of gravity waves emitted by fronts and jets. Geophys. Res. Lett., 42, 20712078, https://doi.org/10.1002/2015GL063298.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de la Cámara, A., F. Lott, V. Jewtoukoff, R. Plougonven, and A. Hertzog, 2016: On the gravity wave forcing during the southern stratospheric final warming in LMDZ. J. Atmos. Sci., 73, 32133226, https://doi.org/10.1175/JAS-D-15-0377.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ehard, B., and Coauthors, 2017: Horizontal propagation of large-amplitude mountain waves into the polar night jet. J. Geophys. Res. Atmos., 122, 14231436, https://doi.org/10.1002/2016JD025621.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fritts, D., and T. J. Dunkerton, 1985: Fluxes of heat and constituents due to convectively unstable gravity waves. J. Atmos. Sci., 42, 549556, https://doi.org/10.1175/1520-0469(1985)042<0549:FOHACD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fritts, D., and T. E. VanZandt, 1993: Spectral estimates of gravity wave energy and momentum fluxes. Part I: Energy dissipation, acceleration and constraints. J. Atmos. Sci., 50, 36853694, https://doi.org/10.1175/1520-0469(1993)050<3685:SEOGWE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fritts, D., and W. Lu, 1993: Spectral estimates of gravity wave energy and momentum fluxes. Part II: Parameterization of wave forcing and variability. J. Atmos. Sci., 50, 36953713, https://doi.org/10.1175/1520-0469(1993)050<3695:SEOGWE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garfinkel, C. I., and L. Oman, 2018: Effect of gravity waves from small islands in the Southern Ocean on the Southern Hemisphere atmospheric circulation. J. Geophys. Res. Atmos., 123, 15521561, https://doi.org/10.1002/2017JD027576.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grimshaw, R., 1975: Nonlinear internal gravity waves in a rotating fluid. J. Fluid Mech., 71, 497512, https://doi.org/10.1017/S0022112075002704.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hardiman, S. C., D. G. Andrews, A. A. White, N. Butchart, and I. Edmond, 2010: Using different formulations of the transformed Eulerian mean equations and Eliassen–Palm diagnostics in general circulation models. J. Atmos. Sci., 67, 19831995, https://doi.org/10.1175/2010JAS3355.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hendricks, E., J. Doyle, S. Eckermann, Q. Jiang, and P. Reinecke, 2014: What is the source of the stratospheric gravity wave belt in austral winter? J. Atmos. Sci., 71, 15831592, https://doi.org/10.1175/JAS-D-13-0332.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hertzog, A., C. Souprayen, and A. Hauchecorne, 2002: Eikonal simulations for the formation and the maintenance of atmospheric gravity wave spectra. J. Geophys. Res., 107, 4145, https://doi.org/10.1029/2001JD000815.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hertzog, A., J. Alexander, and R. Plougonven, 2012: On the intermittency of gravity wave momentum flux in the stratosphere. J. Atmos. Sci., 69, 34333448, https://doi.org/10.1175/JAS-D-12-09.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hines, C. O., 1997a: Doppler-spread parametrization of gravity-wave momentum deposition in the middle atmosphere. Part 1: Basic formulation. J. Atmos. Sol.-Terr. Phys., 59, 371386, https://doi.org/10.1016/S1364-6826(96)00079-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hines, C. O., 1997b: Doppler-spread parametrization of gravity-wave momentum deposition in the middle atmosphere. Part 2: Broad and quasi monochromatic spectra, and implementation. J. Atmos. Sol.-Terr. Phys., 59, 387400, https://doi.org/10.1016/S1364-6826(96)00080-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jewtoukoff, V., A. Hertzog, R. Plougonven, A. de la Cámara, and F. Lott, 2015: Comparison of gravity waves in the Southern Hemisphere derived from balloon observations and the ECMWF analyses. J. Atmos. Sci., 72, 34493468, https://doi.org/10.1175/JAS-D-14-0324.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalisch, S., P. Preusse, M. Ern, D. S. Eckermann, and M. Reise, 2014: Differences in gravity wave drag between realistic oblique and assumed vertical propagation. J. Geophys. Res. Atmos., 119, 10 08110 099, https://doi.org/10.1002/2014JD021779.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, Y.-H., G. Bölöni, S. Borchert, H.-Y. Chun, and U. Achatz, 2021: Toward transient subgrid-scale gravity wave representation in atmospheric models. Part II: Wave intermittency simulated with convective sources. J. Atmos. Sci., 78, 13391357, https://doi.org/10.1175/JAS-D-20-0066.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, Y.-J., D. S. Eckermann, and H. Chun, 2003: An overview of past, present and future gravity-wave drag parametrization for numerical climate and weather prediction models. Atmos.–Ocean, 41, 6598, https://doi.org/10.3137/ao.410105.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kruse, G. C., and R. B. Smith, 2018: Nondissipative and dissipative momentum deposition by mountain wave events in sheared environments. J. Atmos. Sci., 75, 27212740, https://doi.org/10.1175/JAS-D-17-0350.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., 1981: Turbulence and stress owing to gravity wave and tidal breakdown. J. Geophys. Res., 86, 97079714, https://doi.org/10.1029/JC086iC10p09707.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lott, F., and M. Miller, 1997: A new subgrid-scale orographic drag parametrization: Its formulation and testing. Quart. J. Roy. Meteor. Soc., 123, 101127, https://doi.org/10.1002/qj.49712353704.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lott, F., and L. Guez, 2013: A stochastic parameterization of the gravity waves due to convection and its impact on the equatorial stratosphere. J. Geophys. Res. Atmos., 118, 88978909, https://doi.org/10.1002/jgrd.50705.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McLandress, C., T. G. Sheperd, S. Polavarapu, and S. R. Beagley, 2012: Is missing orographic gravity wave drag near 60°S the cause of the stratospheric zonal wind biases in chemistry–climate models? J. Atmos. Sci., 69, 802818, https://doi.org/10.1175/JAS-D-11-0159.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Medvedev, A. S., and G. P. Klaassen, 1995: Vertical evolution of gravity wave spectra and the parametrization of associated wave drag. J. Geophys. Res., 100, 25 84125 854, https://doi.org/10.1029/95JD02533.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muraschko, J., M. Fruman, U. Achatz, S. Hickel, and Y. Toledo, 2015: On the application of Wentzel–Kramer–Brillouin theory for the simulation of the weakly nonlinear dynamics of gravity waves. Quart. J. Roy. Meteor. Soc., 141, 676697, https://doi.org/10.1002/qj.2381.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Olbers, D., C. Eden, E. Becker, F. Pollmann, and J. Jungclaus, 2019: The IDEMIX model: Parameterization of internal gravity waves for circulation models of ocean and atmosphere. Energy Transfers in Atmosphere and Ocean, Springer, 87–125, https://doi.org/10.1007/978-3-030-05704-6_3.

    • Crossref
    • Export Citation
  • Orr, A., P. Bechtold, J. F. Scinocca, M. Ern, and M. Janiskova, 2010: Improved middle atmosphere climate and forecasts in the ECMWF model through a nonorographic gravity wave drag parameterization. J. Climate, 23, 59055926, https://doi.org/10.1175/2010JCLI3490.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., G. J. Shutts, and R. Swinbank, 1986: Alleviation of a systematic westerly bias in general circulation and numerical weather-prediction models through an orographic gravity wave drag parametrization. Quart. J. Roy. Meteor. Soc., 112, 10011039, https://doi.org/10.1002/qj.49711247406.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Plougonven, R., A. de la Cámara, A. Hertzog, and F. Lott, 2020: How does knowledge of atmospheric gravity waves guide their parameterizations? Quart. J. Roy. Meteor. Soc., 146, 15291543, https://doi.org/10.1002/qj.3732.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ribstein, B., and U. Achatz, 2016: The interaction between gravity waves and solar tides in a linear tidal model with a 4D ray-tracing gravity-wave parameterization. J. Geophys. Res. Space Phys., 121, 89368950, https://doi.org/10.1002/2016JA022478.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ribstein, B., U. Achatz, and F. Senf, 2015: The interaction between gravity waves and solar tides: Results from 4D ray tracing coupled to a linear tidal model. J. Geophys. Res. Space Phys., 120, 67956817, https://doi.org/10.1002/2015JA021349.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richter, J. H., F. Sassi, and R. R. Garcia, 2010: Toward a physically based gravity wave source parameterization in a general circulation model. J. Atmos. Sci., 67, 136156, https://doi.org/10.1175/2009JAS3112.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sato, K., S. Watanabe, Y. Kawatani, Y. Tomikawa, K. Miyazaki, and M. Takahashi, 2009: On the origin of mesospheric gravity waves. Geophys. Res. Lett., 36, L19801, https://doi.org/10.1029/2009GL039908.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scaife, A. A., J. R. Knight, G. K. Vallis, and C. K. Folland, 2005: A stratospheric influence on the winter NAO and North Atlantic surface climate. Geophys. Res. Lett., 32, L18715, https://doi.org/10.1029/2005GL023226.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scaife, A. A., and Coauthors, 2012: Climate change projections and stratosphere–troposphere interaction. Climate Dyn., 38, 20892097, https://doi.org/10.1007/s00382-011-1080-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scinocca, J. F., 2003: An accurate spectral nonorographic gravity wave drag parameterization for general circulation models. J. Atmos. Sci., 60, 667682, https://doi.org/10.1175/1520-0469(2003)060<0667:AASNGW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Senf, F., and U. Achatz, 2011: On the impact of middle-atmosphere thermal tides on the propagation and dissipation of gravity waves. J. Geophys. Res., 116, D24110, https://doi.org/10.1029/2011JD015794.

    • Search Google Scholar
    • Export Citation
  • Shapiro, R., 1975: Linear filtering. Math. Comput., 29, 10941097, https://doi.org/10.1090/S0025-5718-1975-0389356-X.

  • Skamarock, W. C., and Coauthors, 2019: A description of the Advanced Research WRF version 4. National Center for Atmospheric Research Tech. Note NCAR/TN-556+STR, 145 pp., https://doi.org/10.5065/1dfh-6p97.

    • Crossref
    • Export Citation
  • Smith, A. K., 2012: Global dynamics of the MLT. Surv. Geophys., 33, 11771230, https://doi.org/10.1007/s10712-012-9196-9.

  • Song, I.-S., and H.-Y. Chun, 2005: Momentum flux spectrum of convectively forced internal gravity waves and its application to gravity wave drag parameterization. Part I: Theory. J. Atmos. Sci., 62, 107124, https://doi.org/10.1175/JAS-3363.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Song, I.-S., and H.-Y. Chun, 2008: A Lagrangian spectral parameterization of gravity wave drag induced by cumulus convection. J. Atmos. Sci., 65, 12041224, https://doi.org/10.1175/2007JAS2369.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swinbank, R., and D. A. Ortland, 2003: Compilation of wind data for the Upper Atmosphere Research Satellite (UARS) Reference Atmosphere Project. J. Geophys. Res., 108, 4615, https://doi.org/10.1029/2002JD003135.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • VanZandt, T. E., 1982: A universal spectrum of buoyancy waves in the atmosphere. Geophys. Res. Lett., 9, 575578, https://doi.org/10.1029/GL009i005p00575.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warner, C. D., and M. E. McIntyre, 1996: On the propagation and dissipation of gravity wave spectra through a realistic middle atmosphere. J. Atmos. Sci., 53, 32133235, https://doi.org/10.1175/1520-0469(1996)053<3213:OTPADO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wei, J., G. Bölöni, and U. Achatz, 2019: Efficient modelling of the interaction of mesoscale gravity waves with unbalanced large-scale flows: Pseudomomentum-flux convergence versus direct approach. J. Atmos. Sci., 76, 27152738, https://doi.org/10.1175/JAS-D-18-0337.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilhelm, J., T. Akylas, G. Bölöni, J. Wei, B. Ribstein, R. Klein, and U. Achatz, 2018: Interactions between mesoscale and submesoscale gravity waves and their efficient representation in mesoscale-resolving models. J. Atmos. Sci., 75, 22572280, https://doi.org/10.1175/JAS-D-17-0289.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zängl, G., D. Reinert, P. Ripodas, and M. Baldauf, 2015: The ICON (Icosahedral Non-hydrostatic) modelling framework of DWD and MPI-M: Description of the non-hydrostatic dynamical core. Quart. J. Roy. Meteor. Soc., 141, 563579, https://doi.org/10.1002/qj.2378.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 369 0 0
Full Text Views 694 219 14
PDF Downloads 574 185 12