• Achatz, U., B. Ribstein, F. Senf, and R. Klein, 2017: The interaction between synoptic-scale balanced flow and a finite-amplitude mesoscale wave field throughout all atmospheric layers: Weak and moderately strong stratification. Quart. J. Roy. Meteor. Soc., 143, 342361, https://doi.org/10.1002/qj.2926.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alexander, M. J., and T. J. Dunkerton, 1999: A spectral parameterization of mean-flow forcing due to breaking gravity waves. J. Atmos. Sci., 56, 41674182, https://doi.org/10.1175/1520-0469(1999)056<4167:ASPOMF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alexander, M. J., and Coauthors, 2010: Recent developments in gravity-wave effects in climate models and the global distribution of gravity-wave momentum flux from observations and models. Quart. J. Roy. Meteor. Soc., 136, 11031124, https://doi.org/10.1002/qj.637.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bechtold, P., M. Köhler, T. Jung, F. Doblas-Reyes, M. Leutbecher, M. J. Rodwell, F. Vitart, and G. Balsamo, 2008: Advances in simulating atmospheric variability with the ECMWF model: From synoptic to decadal time-scales. Quart. J. Roy. Meteor. Soc., 134, 13371351, https://doi.org/10.1002/qj.289.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beres, J. H., R. R. Garcia, B. A. Boville, and F. Sassi, 2005: Implementation of a gravity wave source spectrum parameterization dependent on the properties of convection in the Whole Atmosphere Community Climate Model (WACCM). J. Geophys. Res., 110, D10108, https://doi.org/10.1029/2004JD005504.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bölöni, G., B. Ribstein, J. Muraschko, C. Sgoff, J. Wei, and U. Achatz, 2016: The interaction between atmospheric gravity waves and large-scale flows: An efficient description beyond the nonacceleration paradigm. J. Atmos. Sci., 73, 48334852, https://doi.org/10.1175/JAS-D-16-0069.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bölöni, G., Y.-H. Kim, S. Borchert, and U. Achatz, 2021: Toward transient subgrid-scale gravity wave representation in atmospheric models. Part I: Propagation model including nondissipative wave–mean-flow interactions. J. Atmos. Sci., 78, 13171338, https://doi.org/10.1175/JAS-D-20-0065.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Borchert, S., G. Zhou, M. Baldauf, H. Schmidt, G. Zängl, and D. Reinert, 2019: The upper-atmosphere extension of the ICON general circulation model (version: UA-ICON-1.0). Geosci. Model Dev., 12, 35413569, https://doi.org/10.5194/gmd-12-3541-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bushell, A. C., N. Butchart, S. H. Derbyshire, D. R. Jackson, G. J. Shutts, S. B. Vosper, and S. Webster, 2015: Parameterized gravity wave momentum fluxes from sources related to convection and large-scale precipitation processes in a global atmosphere model. J. Atmos. Sci., 72, 43494371, https://doi.org/10.1175/JAS-D-15-0022.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cao, B., and A. Z. Liu, 2016: Intermittency of gravity wave momentum flux in the mesopause region observed with an all-sky airglow imager. J. Geophys. Res. Atmos., 121, 650663, https://doi.org/10.1002/2015JD023802.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Choi, H.-J., and H.-Y. Chun, 2011: Momentum flux spectrum of convective gravity waves. Part I: An update of a parameterization using mesoscale simulations. J. Atmos. Sci., 68, 739759, https://doi.org/10.1175/2010JAS3552.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Choi, H.-J., J.-Y. Han, M.-S. Koo, H.-Y. Chun, Y.-H. Kim, and S.-Y. Hong, 2018: Effects of non-orographic gravity wave drag on seasonal and medium-range predictions in a global forecast model. Asia-Pac. J. Atmos. Sci., 54, 385402, https://doi.org/10.1007/s13143-018-0023-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de la Cámara, A., and F. Lott, 2015: A parameterization of gravity waves emitted by fronts and jets. Geophys. Res. Lett., 42, 20712078, https://doi.org/10.1002/2015GL063298.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de la Cámara, A., F. Lott, and A. Hertzog, 2014: Intermittency in a stochastic parameterization of nonorographic gravity waves. J. Geophys. Res. Atmos., 119, 11 90511 919, https://doi.org/10.1002/2014JD022002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dorrestijn, J., D. T. Crommelin, A. P. Siebesma, H. J. J. Jonker, and C. Jakob, 2015: Stochastic parameterization of convective area fractions with a multicloud model inferred from observational data. J. Atmos. Sci., 72, 854869, https://doi.org/10.1175/JAS-D-14-0110.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunkerton, T. J., 1997: The role of gravity waves in the quasi-biennial oscillation. J. Geophys. Res., 102, 26 05326 076, https://doi.org/10.1029/96JD02999.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ern, M., and Coauthors, 2014: Interaction of gravity waves with the QBO: A satellite perspective. J. Geophys. Res. Atmos., 119, 23292355, https://doi.org/10.1002/2013JD020731.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garcia, R. R., D. R. Marsh, D. E. Kinnison, B. A. Boville, and F. Sassi, 2007: Simulation of secular trends in the middle atmosphere, 1950-2003. J. Geophys. Res., 112, D09301, https://doi.org/10.1029/2006JD007485.

    • Search Google Scholar
    • Export Citation
  • Gini, C., 1912: Variabilità e mutabilità (Variability and Mutability). Tipografia Paolo Cuppini, 158 pp.

  • Gini, C., 1914: Sulla misura della concentrazione e della variabilità dei caratteri. Atti R. Ist. Veneto Sci. Lett. Arti, 73, 12031248.

    • Search Google Scholar
    • Export Citation
  • Grimshaw, R., 1975: Nonlinear internal gravity waves in a rotating fluid. J. Fluid Mech., 71, 497512, https://doi.org/10.1017/S0022112075002704.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hertzog, A., G. Boccara, R. A. Vincent, F. Vial, and P. Cocquerez, 2008: Estimation of gravity wave momentum flux and phase speeds from quasi-Lagrangian stratospheric balloon flights. Part II: Results from the Vorcore campaign in Antarctica. J. Atmos. Sci., 65, 30563070, https://doi.org/10.1175/2008JAS2710.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hertzog, A., M. J. Alexander, and R. Plougonven, 2012: On the intermittency of gravity wave momentum flux in the stratosphere. J. Atmos. Sci., 69, 34333448, https://doi.org/10.1175/JAS-D-12-09.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jewtoukoff, V., R. Plougonven, and A. Hertzog, 2013: Gravity waves generated by deep tropical convection: Estimates from balloon observations and mesoscale simulations. J. Geophys. Res. Atmos., 118, https://doi.org/10.1002/jgrd.50781.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jewtoukoff, V., A. Hertzog, R. Plougonven, A. de la Cámara, and F. Lott, 2015: Comparison of gravity waves in the southern hemisphere derived from balloon observations and the ECMWF analyses. J. Atmos. Sci., 72, 34493468, https://doi.org/10.1175/JAS-D-14-0324.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, M.-J., H.-Y. Chun, and Y.-H. Kim, 2017: Momentum flux of convective gravity waves derived from an offline gravity wave parameterization. Part I: Spatiotemporal variations at source level. J. Atmos. Sci., 74, 31673189, https://doi.org/10.1175/JAS-D-17-0053.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, Y.-H., and H.-Y. Chun, 2015: Contributions of equatorial wave modes and parameterized gravity waves to the tropical QBO in HadGEM2. J. Geophys. Res. Atmos., 120, 10651090, https://doi.org/10.1002/2014JD022174.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, Y.-H., A. C. Bushell, D. R. Jackson, and H.-Y. Chun, 2013: Impacts of introducing a convective gravity-wave parameterization upon the QBO in the Met Office Unified Model. Geophys. Res. Lett., 40, 18731877, https://doi.org/10.1002/grl.50353.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, Y.-J., S. D. Eckermann, and H.-Y. Chun, 2003: An overview of the past, present and future of gravity-wave drag parametrization for numerical climate and weather prediction models. Atmos.–Ocean, 41, 6598, https://doi.org/10.3137/ao.410105.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., 1981: Turbulence and stress owing to gravity wave and tidal breakdown. J. Geophys. Res., 86, 97079714, https://doi.org/10.1029/JC086iC10p09707.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lott, F., and M. J. Miller, 1997: A new subgrid-scale orographic drag parametrization: Its formulation and testing. Quart. J. Roy. Meteor. Soc., 123, 101127, https://doi.org/10.1002/qj.49712353704.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lott, F., and L. Guez, 2013: A stochastic parameterization of the gravity waves due to convection and its impact on the equatorial stratosphere. J. Geophys. Res. Atmos., 118, 88978909, https://doi.org/10.1002/jgrd.50705.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McFarlane, N. A., 1987: The effect of orographically excited gravity wave drag on the general circulation of the lower stratosphere and troposphere. J. Atmos. Sci., 44, 17751800, https://doi.org/10.1175/1520-0469(1987)044<1775:TEOOEG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muraschko, J., M. D. Fruman, U. Achatz, S. Hickel, and Y. Toledo, 2015: On the application of Wentzel–Kramer–Brillouin theory for the simulation of the weakly nonlinear dynamics of gravity waves. Quart. J. Roy. Meteor. Soc., 141, 676697, https://doi.org/10.1002/qj.2381.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Plougonven, R., A. Hertzog, and L. Guez, 2013: Gravity waves over Antarctica and the Southern Ocean: Consistent momentum fluxes in mesoscale simulations and stratospheric balloon observations. Quart. J. Roy. Meteor. Soc., 139, 101118, https://doi.org/10.1002/qj.1965.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ribstein, B., and U. Achatz, 2016: The interaction between gravity waves and solar tides in a linear tidal model with a 4-D ray-tracing gravity-wave parameterization. J. Geophys. Res. Space Phys., 121, 89368950, https://doi.org/10.1002/2016JA022478.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richter, J. H., F. Sassi, and R. R. Garcia, 2010: Toward a physically based gravity wave source parameterization in a general circulation model. J. Atmos. Sci., 67, 136156, https://doi.org/10.1175/2009JAS3112.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richter, J. H., C. Chen, Q. Tang, S. Xie, and P. J. Rasch, 2019: Improved simulation of the QBO in E3SMv1. J. Adv. Model. Earth Syst., 11, 34033418, https://doi.org/10.1029/2019MS001763.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Senf, F., and U. Achatz, 2011: On the impact of middle-atmosphere thermal tides on the propagation and dissipation of gravity waves. J. Geophys. Res., 116, D24110, https://doi.org/10.1029/2011JD015794.

    • Search Google Scholar
    • Export Citation
  • Song, I.-S., and H.-Y. Chun, 2005: Momentum flux spectrum of convectively forced internal gravity waves and its application to gravity wave drag parameterization. Part I: Theory. J. Atmos. Sci., 62, 107124, https://doi.org/10.1175/JAS-3363.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tsuda, T., Y. Murayama, H. Wiryosumarto, S. W. B. Harijono, and S. Kato, 1994: Radiosonde observations of equatorial atmosphere dynamics over Indonesia: 2. Characteristics of gravity waves. J. Geophys. Res., 99, 10 50710 516, https://doi.org/10.1029/94JD00354.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wei, J., G. Bölöni, and U. Achatz, 2019: Efficient modeling of the interaction of mesoscale gravity waves with unbalanced large-scale flows: Pseudomomentum-flux convergence versus direct approach. J. Atmos. Sci., 76, 27152738, https://doi.org/10.1175/JAS-D-18-0337.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilhelm, J., T. R. Akylas, G. Bölöni, J. Wei, B. Ribstein, R. Klein, and U. Achatz, 2018: Interactions between mesoscale and submesoscale gravity waves and their efficient representation in mesoscale-resolving models. J. Atmos. Sci., 75, 22572280, https://doi.org/10.1175/JAS-D-17-0289.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wright, C. J., S. M. Osprey, and J. C. Gille, 2013: Global observations of gravity wave intermittency and its impact on the observed momentum flux morphology. J. Geophys. Res. Atmos., 118, 10 98010 993, https://doi.org/10.1002/jgrd.50869.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 30 30 30
Full Text Views 4 4 4
PDF Downloads 6 6 6

Toward Transient Subgrid-Scale Gravity Wave Representation in Atmospheric Models. Part II: Wave Intermittency Simulated with Convective Sources

View More View Less
  • 1 Institut für Atmosphäre und Umwelt, Goethe-Universität Frankfurt am Main, Frankfurt, Germany
  • 2 Deutscher Wetterdienst, Offenbach, Germany
  • 3 Department of Atmospheric Sciences, Yonsei University, Seoul, South Korea
  • 4 Institut für Atmosphäre und Umwelt, Goethe-Universität Frankfurt am Main, Frankfurt, Germany
© Get Permissions
Restricted access

Abstract

In a companion paper, the Multiscale Gravity Wave Model (MS-GWaM) has been introduced and its application to a global model as a transient subgrid-scale parameterization has been described. This paper focuses on the examination of intermittency of gravity waves (GWs) modeled by MS-GWaM. To introduce the variability and intermittency in wave sources, convective GW sources are formulated, using diabatic heating diagnosed by the convection parameterization, and they are coupled to MS-GWaM in addition to a flow-independent source in the extratropics accounting for GWs due neither to convection nor to orography. The probability density function (PDF) and Gini index for GW pseudomomentum fluxes are assessed to investigate the intermittency. Both are similar to those from observations in the lower stratosphere. The intermittency of GWs over tropical convection is quite high and is found not to change much in the vertical direction. In the extratropics, where nonconvective GWs dominate, the intermittency is lower than that in the tropics in the stratosphere and comparable to that in the mesosphere, exhibiting a gradual increase with altitude. The PDFs in these latitudes seem to be close to the lognormal distributions. Effects of transient GW–mean-flow interactions on the simulated GW intermittency are assessed by performing additional simulations using the steady-state assumption in the GW parameterization. The intermittency of parameterized GWs over tropical convection is found to be overestimated by the assumption, whereas in the extratropics it is largely underrepresented. Explanation and discussion of these effects are included.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

This article is included in the Multi-Scale Dynamics of Gravity Waves (MS-GWaves) Special Collection.

This article has a companion article which can be found at http://journals.ametsoc.org/doi/abs/10.1175/JAS-D-20-0065.1.

Corresponding author: Young-Ha Kim, kim@iau.uni-frankfurt.de

Abstract

In a companion paper, the Multiscale Gravity Wave Model (MS-GWaM) has been introduced and its application to a global model as a transient subgrid-scale parameterization has been described. This paper focuses on the examination of intermittency of gravity waves (GWs) modeled by MS-GWaM. To introduce the variability and intermittency in wave sources, convective GW sources are formulated, using diabatic heating diagnosed by the convection parameterization, and they are coupled to MS-GWaM in addition to a flow-independent source in the extratropics accounting for GWs due neither to convection nor to orography. The probability density function (PDF) and Gini index for GW pseudomomentum fluxes are assessed to investigate the intermittency. Both are similar to those from observations in the lower stratosphere. The intermittency of GWs over tropical convection is quite high and is found not to change much in the vertical direction. In the extratropics, where nonconvective GWs dominate, the intermittency is lower than that in the tropics in the stratosphere and comparable to that in the mesosphere, exhibiting a gradual increase with altitude. The PDFs in these latitudes seem to be close to the lognormal distributions. Effects of transient GW–mean-flow interactions on the simulated GW intermittency are assessed by performing additional simulations using the steady-state assumption in the GW parameterization. The intermittency of parameterized GWs over tropical convection is found to be overestimated by the assumption, whereas in the extratropics it is largely underrepresented. Explanation and discussion of these effects are included.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

This article is included in the Multi-Scale Dynamics of Gravity Waves (MS-GWaves) Special Collection.

This article has a companion article which can be found at http://journals.ametsoc.org/doi/abs/10.1175/JAS-D-20-0065.1.

Corresponding author: Young-Ha Kim, kim@iau.uni-frankfurt.de
Save