• Bell, M. M., and M. T. Montgomery, 2008: Observed structure, evolution, and potential intensity of category 5 Hurricane Isabel (2003) from 12 to 14 September. Mon. Wea. Rev., 136, 20232046, https://doi.org/10.1175/2007MWR1858.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and J. M. Fritsch, 2002: A benchmark simulation for moist nonhydrostatic numerical model. Mon. Wea. Rev., 130, 29172928, https://doi.org/10.1175/1520-0493(2002)130<2917:ABSFMN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and R. Rotunno, 2009: The maximum intensity of tropical cyclones in axisymmetric numerical model simulations. Mon. Wea. Rev., 137, 17701789, https://doi.org/10.1175/2008MWR2709.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., R. P. Worsnop, J. K. Lundquist, and J. A. Zhang, 2017: A simple method for simulating wind profiles in the boundary layer of tropical cyclones. Bound.-Layer Meteor., 162, 475502, https://doi.org/10.1007/s10546-016-0207-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunion, J. P., 2011: Rewriting the climatology of the tropical North Atlantic and Caribbean Sea atmosphere. J. Climate, 24, 893908, https://doi.org/10.1175/2010JCLI3496.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eliassen, A., 1971: On the Ekman layer in a circular vortex. J. Meteor. Soc. Japan, 49A, 784789, https://doi.org/10.2151/jmsj1965.49A.0_784.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eliassen, A., and M. Lystad, 1977: The Ekman layer of a circular vortex: A numerical and theoretical study. Geophys. Norv., 31, 116.

  • Hawkins, H. F., and D. T. Rubsam, 1968: Hurricane Hilda, 1964: II. Structure and budgets of the hurricane on October 1, 1964. Mon. Wea. Rev., 96, 617636, https://doi.org/10.1175/1520-0493(1968)096<0617:HH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heng, J., Y. Wang, and W. Zhou, 2017: Revisiting the balanced and unbalanced aspects of tropical cyclone intensification. J. Atmos. Sci., 74, 25752591, https://doi.org/10.1175/JAS-D-17-0046.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heng, J., Y. Wang, and W. Zhou, 2018: Reply to “Comments on ‘Revisiting the balanced and unbalanced aspects of tropical cyclone intensification.’” J. Atmos. Sci., 75, 24972505, https://doi.org/10.1175/JAS-D-18-0020.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kepert, J., 2001: The dynamics of boundary layer jets within the tropical cyclone core. Part I: Linear theory. J. Atmos. Sci., 58, 24692484, https://doi.org/10.1175/1520-0469(2001)058<2469:TDOBLJ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kepert, J., 2006a: Observed boundary layer wind structure and balance in the hurricane core. Part I: Hurricane Georges. J. Atmos. Sci., 63, 21692193, https://doi.org/10.1175/JAS3745.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kepert, J., 2006b: Observed boundary layer wind structure and balance in the hurricane core. Part II: Hurricane Mitch. J. Atmos. Sci., 63, 21942211, https://doi.org/10.1175/JAS3746.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kepert, J., 2010a: Slab- and height-resolving models of the tropical cyclone boundary layer. Part I: Comparing the simulations. Quart. J. Roy. Meteor. Soc., 136, 16861699, https://doi.org/10.1002/qj.667.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kepert, J., 2010b: Slab- and height-resolving models of the tropical cyclone boundary layer. Part II: Why the simulations differ. Quart. J. Roy. Meteor. Soc., 136, 17001711, https://doi.org/10.1002/qj.685.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kepert, J., 2017: Time and space scales in the tropical cyclone boundary layer, and the location of the eyewall updraft. J. Atmos. Sci., 74, 33053323, https://doi.org/10.1175/JAS-D-17-0077.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kepert, J., and Y. Wang, 2001: The dynamics of boundary layer jets within the tropical cyclone core. Part II: Nonlinear enhancement. J. Atmos. Sci., 58, 24852501, https://doi.org/10.1175/1520-0469(2001)058<2485:TDOBLJ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuo, H.-L., 1959: Dynamics of convective vortices and eye formation. The Atmospheric and Sea in Motion, B. Bolin, Ed., Rockefeller Institute Press, 413–424.

  • Li, T.-H., and Y. Wang, 2021a: The role of boundary layer dynamics in tropical cyclone intensification. Part I: Sensitivity to surface drag coefficient. J. Meteor. Soc. Japan, https://doi.org/10.2151/jmsj.2021-027, in press.

    • Search Google Scholar
    • Export Citation
  • Li, T.-H., and Y. Wang, 2021b: The role of boundary layer dynamics in tropical cyclone intensification. Part II: Sensitivity to initial vortex structure. J. Meteor. Soc. Japan, https://doi.org/10.2151/jmsj.2021-028, in press.

    • Search Google Scholar
    • Export Citation
  • Li, Y., Y. Wang, and Y. Lin, 2019: Revisiting the dynamics of eyewall contraction of tropical cyclones. J. Atmos. Sci., 76, 32293245, https://doi.org/10.1175/JAS-D-19-0076.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y., Y. Wang, and Y. Lin, 2020a: How much does the upward advection of the supergradient component of boundary layer wind contribute to tropical cyclone intensification and maximum intensity? J. Atmos. Sci., 77, 26492664, https://doi.org/10.1175/JAS-D-19-0350.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y., Y. Wang, and Y. Lin, 2020b: Reply to “Comments on ‘How much does the upward advection of the supergradient component of boundary layer wind contribute to tropical cyclone intensification and maximum intensity?’” J. Atmos. Sci., 77, 43794384, https://doi.org/10.1175/JAS-D-20-0242.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Malkus, J. S., 1958: On the structure and maintenance of the mature hurricane eye. J. Meteor., 15, 337349, https://doi.org/10.1175/1520-0469(1958)015<0337:OTSAMO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitsuta, Y., T. Suenobu, and T. Fujii, 1988: Supergradient surface wind in the eye of a typhoon. J. Meteor. Soc. Japan, 66, 505508, https://doi.org/10.2151/jmsj1965.66.3_505.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miyamoto, Y., M. Satoh, H. Tomita, K. Oouchi, Y. Yamada, C. Kodama, and J. Kinter III, 2014: Gradient wind balance in tropical cyclones in high-resolution global experiments. J. Atmos. Sci., 142, 19081926, https://doi.org/10.1175/MWR-D-13-00115.1.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., and R. K. Smith, 2017: Recent developments in the fluid dynamics of the tropical cyclones. Annu. Rev. Fluid Mech., 49, 541574, https://doi.org/10.1146/annurev-fluid-010816-060022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., and R. K. Smith, 2018: Comments on “Revisiting the balanced and unbalanced aspects of tropical cyclone intensification.” J. Atmos. Sci., 75, 24912496, https://doi.org/10.1175/JAS-D-17-0323.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenthal, S. L., 1962: A theoretical analysis of the field of motion in the hurricane boundary layer. U.S. Dept. of Commerce National Hurricane Research Project Rep. 56, 12 pp.

  • Rotunno, R., 2014: Secondary circulations in rotating-flow boundary layers. Aust. Meteor. Oceanogr. J., 64, 2735, https://doi.org/10.22499/2.6401.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotunno, R., and K. A. Emanuel, 1987: An air–sea interaction theory for tropical cyclones. Part II: Evolutionary study using a nonhydrostatic axisymmetric numerical model. J. Atmos. Sci., 44, 542561, https://doi.org/10.1175/1520-0469(1987)044<0542:AAITFT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotunno, R., and G. H. Bryan, 2012: Effects of parameterized diffusion on simulated hurricanes. J. Atmos. Sci., 69, 22842299, https://doi.org/10.1175/JAS-D-11-0204.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmidt, C. W., and R. K. Smith, 2016: Tropical cyclone evolution in a minimal axisymmetric model revisited. Quart. J. Roy. Meteor. Soc., 142, 15051516, https://doi.org/10.1002/qj.2753.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwendike, J., and J. D. Kepert, 2008: The boundary layer winds in Hurricanes Danielle (1998) and Isabel (2003). Mon. Wea. Rev., 136, 31683192, https://doi.org/10.1175/2007MWR2296.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shapiro, L. J., 1983: The asymmetric boundary layer under a translating hurricane. J. Atmos. Sci., 40, 19841998, https://doi.org/10.1175/1520-0469(1983)040<1984:TABLFU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stern, D. P., J. D. Kepert, G. H. Bryan, and J. D. Doyle, 2020: Understanding atypical midlevel wind speed maxima in hurricane eyewalls. J. Atmos. Sci., 77, 15311557, https://doi.org/10.1175/JAS-D-19-0191.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115, https://doi.org/10.1175/2008MWR2387.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, G. J., 2015: The effects of vortex structure and vortex translation on the tropical cyclone boundary layer wind field. J. Adv. Model. Earth Syst., 7, 188214, https://doi.org/10.1002/2013MS000299.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., 1990: Gradient balance in tropical cyclones. J. Atmos. Sci., 47, 265274, https://doi.org/10.1175/1520-0469(1990)047<0265:GBITC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., 1991: Reply. J. Atmos. Sci., 48, 12091212, https://doi.org/10.1175/1520-0469(1991)048<1209:R>2.0.CO;2.

  • Wood, V. T., and L. W. White, 2011: A new parametric model of vortex tangential-wind profiles: Development, testing, and verification. J. Atmos. Sci., 68, 9901006, https://doi.org/10.1175/2011JAS3588.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, J., and Y. Wang, 2018: Effect of initial vortex structure on intensification of a numerically simulated tropical cyclone. J. Meteor. Soc. Japan, 96, 111126, https://doi.org/10.2151/jmsj.2018-014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, D.-L., Y. Liu, and M. K. Yau, 2001: A multiscale numerical study of Hurricane Andrew (1992). Part IV: Unbalanced flows. Mon. Wea. Rev., 129, 92107, https://doi.org/10.1175/1520-0493(2001)129<0092:AMNSOH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., and M. T. Montgomery, 2012: Observational estimates of the horizontal eddy diffusivity and mixing length in the low-level region of intense hurricanes. J. Atmos. Sci., 69, 13061316, https://doi.org/10.1175/JAS-D-11-0180.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., F. D. Marks, M. T. Montgomery, and S. Lorsolo, 2011: An estimation of turbulent characteristics in the low-level region of intense Hurricanes Allen (1980) and Hugo (1989). Mon. Wea. Rev., 139, 14471462, https://doi.org/10.1175/2010MWR3435.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 62 62 62
Full Text Views 20 20 20
PDF Downloads 21 21 21

Contribution of Vertical Advection to Supergradient Wind in Tropical Cyclone Boundary Layer: A Numerical Study

View More View Less
  • 1 State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, China Meteorological Administration, Beijing, China
  • 2 College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
  • 3 International Pacific Research Center, University of Hawai‘i at Mānoa, Honolulu, Hawaii
  • 4 Department of Atmospheric Sciences, University of Hawai‘i at Mānoa, Honolulu, Hawaii
  • 5 Ministry of Education Key Laboratory for Earth System Modelling, Department of Earth System Science, Tsinghua University, Beijing, China
  • 6 Joint Center for Global Change Studies, Tsinghua University, Beijing, China
© Get Permissions
Restricted access

Abstract

The existence of supergradient wind in the interior of the boundary layer is a distinct feature of a tropical cyclone (TC). Although the vertical advection is shown to enhance supergradient wind in the TC boundary layer (TCBL), how and to what extent the strength and structure of supergradient wind are modulated by vertical advection are not well understood. In this study, both a TCBL model and an axisymmetric full-physics model are used to quantify the contribution of the vertical advection process to the strength and vertical structure of supergradient wind in TCBL. Results from the TCBL model show that the removal of vertical advection of radial wind reduces both the strength and height of supergradient wind by slightly more than 50%. The removal of vertical advection of agradient wind reduces the height of the supergradient wind core by ~30% but increases the strength of supergradient wind by ~10%. Results from the full-physics model show that the removal of vertical advection of radial wind or agradient wind reduces both the strength and height of supergradient wind but the removal of that of radial wind produces a more substantial reduction (52%) than the removal of that of agradient wind (35%). However, both the intensification rate and final intensity of the simulated TCs in terms of maximum 10-m wind speed show little differences in experiments with and without the vertical advection of radial or agradient wind, suggesting that supergradient wind contributes little to either the intensification rate or the steady-state intensity of the simulated TC.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Prof. Yuqing Wang, yuqing@hawaii.edu

Abstract

The existence of supergradient wind in the interior of the boundary layer is a distinct feature of a tropical cyclone (TC). Although the vertical advection is shown to enhance supergradient wind in the TC boundary layer (TCBL), how and to what extent the strength and structure of supergradient wind are modulated by vertical advection are not well understood. In this study, both a TCBL model and an axisymmetric full-physics model are used to quantify the contribution of the vertical advection process to the strength and vertical structure of supergradient wind in TCBL. Results from the TCBL model show that the removal of vertical advection of radial wind reduces both the strength and height of supergradient wind by slightly more than 50%. The removal of vertical advection of agradient wind reduces the height of the supergradient wind core by ~30% but increases the strength of supergradient wind by ~10%. Results from the full-physics model show that the removal of vertical advection of radial wind or agradient wind reduces both the strength and height of supergradient wind but the removal of that of radial wind produces a more substantial reduction (52%) than the removal of that of agradient wind (35%). However, both the intensification rate and final intensity of the simulated TCs in terms of maximum 10-m wind speed show little differences in experiments with and without the vertical advection of radial or agradient wind, suggesting that supergradient wind contributes little to either the intensification rate or the steady-state intensity of the simulated TC.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Prof. Yuqing Wang, yuqing@hawaii.edu
Save