• Bell, M. M., M. T. Montgomery, and W.-C. Lee, 2012: An axisymmetric view of concentric eyewall evolution in Hurricane Rita (2005). J. Atmos. Sci., 69, 24142432, https://doi.org/10.1175/JAS-D-11-0167.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brand, S., 1970: Interaction of binary tropical cyclones of the western North Pacific Ocean. J. Appl. Meteor., 9, 433441, https://doi.org/10.1175/1520-0450(1970)009<0433:IOBTCO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cha, D.-H., and Y. Wang, 2013: A dynamical initialization scheme for real-time forecasts of tropical cyclones using the WRF Model. Mon. Wea. Rev., 141, 964986, https://doi.org/10.1175/MWR-D-12-00077.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, S. W., 1983: A numerical study of the interactions between two tropical cyclones. Mon. Wea. Rev., 111, 18061817, https://doi.org/10.1175/1520-0493(1983)111<1806:ANSOTI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S. Y. S., J. A. Knaff, and F. D. Marks, 2006: Effects of vertical wind shear and storm motion on tropical cyclone rainfall asymmetries deduced from TRMM. Mon. Wea. Rev., 134, 31903208, https://doi.org/10.1175/MWR3245.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Corbosiero, K. L., and J. Molinari, 2003: The relationship between storm motion, vertical wind shear, and convective asymmetries in tropical cyclones. J. Atmos. Sci., 60, 366376, https://doi.org/10.1175/1520-0469(2003)060<0366:TRBSMV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeHart, J. C., R. A. Houze Jr., and R. F. Rogers, 2014: Quadrant distribution of tropical cyclone inner-core kinematics in relation to environmental shear. J. Atmos. Sci., 71, 27132732, https://doi.org/10.1175/JAS-D-13-0298.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMaria, M., and J. C. L. Chan, 1984: Comments on “A numerical study of the interactions between two tropical cyclones.” Mon. Wea. Rev., 112, 16431645, https://doi.org/10.1175/1520-0493(1984)112<1643:CONSOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., B. K. Haus, N. Reul, W. J. Plant, M. Stiassnie, H. C. Graber, O. B. Brown, and E. S. Saltzman, 2004: On the limiting aerodynamic roughness of the ocean in very strong winds. Geophys. Res. Lett., 31, L18306, https://doi.org/10.1029/2004GL019460.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, K. Q., and C. J. Neumann, 1983: On the relative motion of binary tropical cyclones. Mon. Wea. Rev., 111, 945953, https://doi.org/10.1175/1520-0493(1983)111<0945:OTRMOB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dritschel, D. G., and D. W. Waugh, 1992: Quantification of the inelastic interaction of unequal vortices in two-dimensional vortex dynamics. Phys. Fluids, 4, 17371744, https://doi.org/10.1063/1.858394.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Falkovich, A. I., A. P. Khain, and I. Ginis, 1995: Motion and evolution of binary tropical cyclones in a coupled atmosphere–ocean numerical model. Mon. Wea. Rev., 123, 13451363, https://doi.org/10.1175/1520-0493(1995)123<1345:MAEOBT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fiorino, M., and R. L. Elsberry, 1989: Some aspects of vortex structure related to tropical cyclone motion. J. Atmos. Sci., 46, 975990, https://doi.org/10.1175/1520-0469(1989)046<0975:SAOVSR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frank, W. M., and E. A. Ritchie, 2001: Effects of vertical wind shear on the intensity and structure of numerically simulated hurricanes. Mon. Wea. Rev., 129, 22492269, https://doi.org/10.1175/1520-0493(2001)129<2249:EOVWSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, H., Y. Wang, M. Riemer, and Q. Li, 2019: Effect of unidirectional vertical wind shear on tropical cyclone intensity change—Lower-layer shear versus upper-layer shear. J. Geophys. Res. Atmos., 124, 62656282, https://doi.org/10.1029/2019JD030586.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fujiwhara, S., 1921: The natural tendency towards symmetry of motion and its application as a principle in meteorology. Quart. J. Roy. Meteor. Soc., 47, 287292, https://doi.org/10.1002/qj.49704720010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fujiwhara, S., 1923: On the growth and decay of vortical systems. Quart. J. Roy. Meteor. Soc., 49, 75104, https://doi.org/10.1002/qj.49704920602.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fujiwhara, S., 1931: Short note on the behavior of two vortices. Proc. Phys. Math. Soc. Japan, 13, 106110.

  • Gray, W. M., 1968: Global view of the origin of tropical disturbances and storms. Mon. Wea. Rev., 96, 669700, https://doi.org/10.1175/1520-0493(1968)096<0669:GVOTOO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gu, J.-F., Z.-M. Tan, and X. Qiu, 2015: Effects of vertical wind shear on inner core thermodynamics of an idealized simulated tropical cyclone. J. Atmos. Sci., 72, 511530, https://doi.org/10.1175/JAS-D-14-0050.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gu, J.-F., Z.-M. Tan, and X. Qiu, 2016: Quadrant-dependent evolution of low-level tangential wind of a tropical cyclone in the shear flow. J. Atmos. Sci., 73, 11591177, https://doi.org/10.1175/JAS-D-15-0165.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holland, G. J., and G. S. Dietachmayer, 1993: On the interaction of tropical-cyclone-scale vortices. III. Continuous barotropic vortices. Quart. J. Roy. Meteor. Soc., 119, 13811398, https://doi.org/10.1002/qj.49711951408.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S. Y., J. Dudhia, and S. H. Chen, 2004: A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Wea. Rev., 132, 103120, https://doi.org/10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S. Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, https://doi.org/10.1175/MWR3199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jang, W., and H. Y. Chun, 2013: The effects of topography on the evolution of Typhoon Saomai (2006) under the influence of Tropical Storm Bopha (2006). Mon. Wea. Rev., 141, 468489, https://doi.org/10.1175/MWR-D-11-00241.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jang, W., and H. Y. Chun, 2015a: Characteristics of binary tropical cyclones observed in the western North Pacific for 62 years (1951–2012). Mon. Wea. Rev., 143, 17491761, https://doi.org/10.1175/MWR-D-14-00331.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jang, W., and H. Y. Chun, 2015b: Effects of thermodynamic profiles on the interaction of binary tropical cyclones. J. Geophys. Res. Atmos., 120, 91739192, https://doi.org/10.1002/2015JD023409.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jarrell, J., S. Brand, and D. S. Nicklin, 1978: An analysis of western North Pacific tropical cyclone forecast errors. Mon. Wea. Rev., 106, 925937, https://doi.org/10.1175/1520-0493(1978)106<0925:AAOWNP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, S. C., 1995: The evolution of vortices in vertical shear. I: Initially barotropic vortices. Quart. J. Roy. Meteor. Soc., 121, 821851, https://doi.org/10.1002/qj.49712152406.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jordan, C., 1958: Mean soundings for the West Indies area. J. Meteor., 15, 9197, https://doi.org/10.1175/1520-0469(1958)015<0091:MSFTWI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and J. M. Fritsch, 1990: A one-dimensional entraining/detraining plume model and its application in convective parameterization. J. Atmos. Sci., 47, 27842802, https://doi.org/10.1175/1520-0469(1990)047<2784:AODEPM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khain, A., I. Ginis, A. Falkovich, and M. Frumin, 2000: Interaction of binary tropical cyclones in a coupled tropical cyclone-ocean model. J. Geophys. Res., 105, 22 33722 354, https://doi.org/10.1029/2000JD900268.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuo, H.-C., G. T.-J. Chen, and C.-H. Lin, 2000: Merger of Tropical Cyclones Zeb and Alex. Mon. Wea. Rev., 128, 29672975, https://doi.org/10.1175/1520-0493(2000)128<2967:MOTCZA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lander, M., and G. J. Holland, 1993: On the interaction of tropical-cyclone-scale vortices. I: Observations. Quart. J. Roy. Meteor. Soc., 119, 13471361, https://doi.org/10.1002/qj.49711951406.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, H.-Y., and Z.-M. Tan, 2016: A dynamical initialization scheme for binary tropical cyclones. Mon. Wea. Rev., 144, 47874803, https://doi.org/10.1175/MWR-D-16-0176.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prieto, R., B. D. McNoldy, S. R. Fulton, and W. H. Schubert, 2003: A classification of binary tropical cyclone–like vortex interactions. Mon. Wea. Rev., 131, 26562666, https://doi.org/10.1175/1520-0493(2003)131<2656:ACOBTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., M. T. Montgomery, and L. D. Grasso, 2004: A new look at the problem of tropical cyclones in vertical shear flow: Vortex resiliency. J. Atmos. Sci., 61, 322, https://doi.org/10.1175/1520-0469(2004)061<0003:ANLATP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ren, F., Y. Xie, B. Yin, M. Wang, and G. Li, 2020: Establishment of an objective standard for the definition of binary tropical cyclones in the western North Pacific. Adv. Atmos. Sci., 37, 12111221, https://doi.org/10.1007/s00376-020-9287-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ritchie, E. A., and G. J. Holland, 1993: On the interaction of tropical-cyclone-scale vortices. II: Discrete vortex patches. Quart. J. Roy. Meteor. Soc., 119, 13631379, https://doi.org/10.1002/qj.49711951407.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shin, S.-E., J.-Y. Han, and J.-J. Baik, 2006: On the critical separation distance of binary vortices in a nondivergent barotropic atmosphere. J. Meteor. Soc. Japan, 84, 853869, https://doi.org/10.2151/jmsj.84.853.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simpson, R., and R. Riehl, 1958: Mid-tropospheric ventilation as a constraint on hurricane development and maintenance. Preprints, Tech. Conf. on Hurricanes, Miami Beach, FL, Amer. Meteor. Soc., D4-1–D4-10.

  • Skamarock, W. C., and et al. , 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., https://doi.org/10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Stern, D. P., and F. Zhang, 2013: How does the eye warm? Part I: A potential temperature budget analysis of an idealized tropical cyclone. J. Atmos. Sci., 70, 7390, https://doi.org/10.1175/JAS-D-11-0329.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, B., and K. Emanuel, 2010: Midlevel ventilation’s constraint on tropical cyclone intensity. J. Atmos. Sci., 67, 18171830, https://doi.org/10.1175/2010JAS3318.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., 2007: A multiply nested, movable mesh, fully compressible, nonhydrostatic tropical cyclone model—TCM4: Model description and development of asymmetries without explicit asymmetric forcing. Meteor. Atmos. Phys., 97, 93116, https://doi.org/10.1007/s00703-006-0246-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., 2008: Structure and formation of an annular hurricane simulated in a fully compressible, nonhydrostatic model—TCM4. J. Atmos. Sci., 65, 15051527, https://doi.org/10.1175/2007JAS2528.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., and Y. Zhu, 1989a: A numerical simulational study on Fujiwhara effect of binary cyclone (in Chinese). J. Acad. Meteor. Sci., 4, 1420.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., and Y. Zhu, 1989b: Interactions of binary vortices in a nondivergent barotropic model (in Chinese). J. Trop. Meteor., 5, 105115, https://doi.org/10.16032/j.issn.1004-4965.1989.02.002.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., and G. J. Holland, 1995: On the interaction of tropical-cyclone-scale vortices. IV: Baroclinic vortices. Quart. J. Roy. Meteor. Soc., 121, 95126, https://doi.org/10.1002/qj.49712152106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., and G. J. Holland, 1996: Tropical cyclone motion and evolution in vertical shear. J. Atmos. Sci., 53, 33133332, https://doi.org/10.1175/1520-0469(1996)053<3313:TCMAEI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waugh, D. W., 1992: The efficiency of symmetric vortex merger. Phys. Fluids, 4, 17451758, https://doi.org/10.1063/1.858395.

  • Wu, C.-C., T.-S. Huang, W.-P. Huang, and K.-H. Chou, 2003: A new look at the binary interaction: Potential vorticity diagnosis of the unusual southward movement of Tropical Storm Bopha (2000) and its interaction with Supertyphoon Saomai (2000). Mon. Wea. Rev., 131, 12891300, https://doi.org/10.1175/1520-0493(2003)131<1289:ANLATB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, X., J.-F. Fei, X.-G. Huang, X.-P. Cheng, and J.-Q. Ren, 2011: Statistical classification and characteristics analysis of binary tropical cyclones over the western North Pacific Ocean. J. Trop. Meteor., 17, 335344, https://doi.org/10.3969/J.SSN.1006-8775.2011.04.003.

    • Search Google Scholar
    • Export Citation
  • Xu, Y., and Y. Wang, 2013: On the initial development of asymmetric vertical motion and horizontal relative flow in a mature tropical cyclone embedded in environmental vertical shear. J. Atmos. Sci., 70, 34713491, https://doi.org/10.1175/JAS-D-12-0335.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, C.-C., C.-C. Wu, K.-H. Chou, and C.-Y. Lee, 2008: Binary interaction between Typhoons Fengshen (2002) and Fungwong (2002) based on the potential vorticity diagnosis. Mon. Wea. Rev., 136, 45934611, https://doi.org/10.1175/2008MWR2496.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, D.-L., and H. Chen, 2012: Importance of the upper-level warm core in the rapid intensification of a tropical cyclone. Geophys. Res. Lett., 39, L02806, https://doi.org/10.1029/2011GL050578.

    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., R. F. Rogers, P. D. Reasor, E. W. Uhlhorn, and F. D. Marks Jr., 2013: Asymmetric hurricane boundary layer structure from dropsonde composites in relation to the environmental vertical wind shear. Mon. Wea. Rev., 141, 39683984, https://doi.org/10.1175/MWR-D-12-00335.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 330 330 45
Full Text Views 90 90 1
PDF Downloads 127 127 1

Intensity Change of Binary Tropical Cyclones (TCs) in Idealized Numerical Simulations: Two Initially Identical Mature TCs

View More View Less
  • 1 Key Laboratory of Marine Hazards Forecasting, Ministry of Natural Resources, Hohai University, Nanjing, China
  • | 2 College of Oceanography, Hohai University, Nanjing, China
  • | 3 State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, China Meteorological Administration, Beijing, China
  • | 4 International Pacific Research Center, School of Ocean and Earth Science and Technology, University of Hawai‘i at Mānoa, Honolulu, Hawaii
  • | 5 Department of Atmospheric Sciences, School of Ocean and Earth Science and Technology, University of Hawai‘i at Mānoa, Honolulu, Hawaii
  • | 6 Department of Meteorology, University of Reading, Reading, United Kingdom
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

This study investigates the intensity change of binary tropical cyclones (TCs) in idealized cloud-resolving simulations. Four simulations of binary interaction between two initially identical mature TCs of about 70 m s−1 with initial separation distance varying from 480 to 840 km are conducted in a quiescent f-plane environment. Results show that two identical TCs finally merge if their initial separation distance is within 600 km. The binary TCs presents two weakening stages (stages 1 and 3) with a quasi-steady evolution (stage 2) in between. Such intensity change of one TC is correlated with the upper-layer vertical wind shear (VWS) associated with the upper-level anticyclone (ULA) of the other TC. The potential temperature budget shows that eddy radial advection of potential temperature induced by large upper-layer VWS contributes to the weakening of the upper-level warm core and thereby the weakening of binary TCs in stage 1. In stage 2, the upper-layer VWS first weakens and then restrengthens with relatively weak magnitude, leading to a quasi-steady intensity evolution. In stage 3, due to the increasing upper-layer VWS, the nonmerging binary TCs weaken again until their separation distance exceeds the local Rossby radius of deformation of the ULA (about 1600 km), which can serve as a dynamical critical distance within which direct interaction can occur between two TCs. In the merging cases, the binary TCs weaken prior to merging because highly asymmetric structure develops as a result of strong horizontal deformation of the inner core. However, the merged system intensifies shortly after merging.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Prof. Yuqing Wang, yuqing@hawaii.edu

Abstract

This study investigates the intensity change of binary tropical cyclones (TCs) in idealized cloud-resolving simulations. Four simulations of binary interaction between two initially identical mature TCs of about 70 m s−1 with initial separation distance varying from 480 to 840 km are conducted in a quiescent f-plane environment. Results show that two identical TCs finally merge if their initial separation distance is within 600 km. The binary TCs presents two weakening stages (stages 1 and 3) with a quasi-steady evolution (stage 2) in between. Such intensity change of one TC is correlated with the upper-layer vertical wind shear (VWS) associated with the upper-level anticyclone (ULA) of the other TC. The potential temperature budget shows that eddy radial advection of potential temperature induced by large upper-layer VWS contributes to the weakening of the upper-level warm core and thereby the weakening of binary TCs in stage 1. In stage 2, the upper-layer VWS first weakens and then restrengthens with relatively weak magnitude, leading to a quasi-steady intensity evolution. In stage 3, due to the increasing upper-layer VWS, the nonmerging binary TCs weaken again until their separation distance exceeds the local Rossby radius of deformation of the ULA (about 1600 km), which can serve as a dynamical critical distance within which direct interaction can occur between two TCs. In the merging cases, the binary TCs weaken prior to merging because highly asymmetric structure develops as a result of strong horizontal deformation of the inner core. However, the merged system intensifies shortly after merging.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Prof. Yuqing Wang, yuqing@hawaii.edu
Save