• Beljaars, A. C. M., 1995: The parameterization of surface fluxes in large-scale models under free convection. Quart. J. Roy. Meteor. Soc., 121, 255270, https://doi.org/10.1002/qj.49712152203.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chan, K. T., and J. C. Chan, 2012: Size and strength of tropical cyclones as inferred from QuikSCAT data. Mon. Wea. Rev., 140, 811824, https://doi.org/10.1175/MWR-D-10-05062.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chan, K. T., and J. C. Chan, 2013: Angular momentum transports and synoptic flow patterns associated with tropical cyclone size change. Mon. Wea. Rev., 141, 39854007, https://doi.org/10.1175/MWR-D-12-00204.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chan, K. T., and J. C. Chan, 2014: Impacts of initial vortex size and planetary vorticity on tropical cyclone size. Quart. J. Roy. Meteor. Soc., 140, 22352248, https://doi.org/10.1002/qj.2292.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chan, K. T., and J. C. Chan, 2015: Global climatology of tropical cyclone size as inferred from QuikSCAT data. Int. J. Climatol., 35, 48434848, https://doi.org/10.1002/joc.4307.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chavas, D. R., and K. A. Emanuel, 2010: A QuikSCAT climatology of tropical cyclone size. Geophys. Res. Lett., 37, L18816, https://doi.org/10.1029/2010GL044558.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, J., and D. R. Chavas, 2020: The transient responses of an axisymmetric tropical cyclone to instantaneous surface roughening and drying. J. Atmos. Sci., 77, 28072834, https://doi.org/10.1175/JAS-D-19-0320.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, C.-J., and C.-C. Wu, 2018: The role of WISHE in secondary eyewall formation. J. Atmos. Sci., 75, 38233841, https://doi.org/10.1175/JAS-D-17-0236.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, C.-J., and C.-C. Wu, 2020: The role of WISHE in the rapid intensification of tropical cyclones. J. Atmos. Sci., 77, 31393160, https://doi.org/10.1175/JAS-D-20-0006.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cronin, T. W., and D. R. Chavas, 2019: Dry and semidry tropical cyclones. J. Atmos. Sci., 76, 21932212, https://doi.org/10.1175/JAS-D-18-0357.1.

    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., and Coauthors, 2013: Impact of typhoons on the ocean in the Pacific: ITOP. Bull. Amer. Meteor. Soc., 95, 14051418, https://doi.org/10.1175/BAMS-D-12-00104.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dyer, A. J., and B. B. Hicks, 1970: Flux–gradient relationships in the constant flux layer. Quart. J. Roy. Meteor. Soc., 96, 715721, https://doi.org/10.1002/qj.49709641012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1986: An air–sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43, 585605, https://doi.org/10.1175/1520-0469(1986)043<0585:AASITF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1989: The finite-amplitude nature of tropical cyclogenesis. J. Atmos. Sci., 46, 34313456, https://doi.org/10.1175/1520-0469(1989)046<3431:TFANOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., M. Fantini, and A. J. Thorpe, 1987: Baroclinic instability in an environment of small stability to slantwise moist convection. Part I: Two-dimensional models. J. Atmos. Sci., 44, 15591573, https://doi.org/10.1175/1520-0469(1987)044<1559:BIIAEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frisius, T., 2015: What controls the size of a tropical cyclone? Investigations with an axisymmetric model. Quart. J. Roy. Meteor. Soc., 141, 24572470, https://doi.org/10.1002/qj.2537.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hill, K. A., and G. M. Lackmann, 2009: Influence of environmental humidity on tropical cyclone size. Mon. Wea. Rev., 137, 32943315, https://doi.org/10.1175/2009MWR2679.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holland, G. J., and R. T. Merrill, 1984: On the dynamics of tropical cyclone structural changes. Quart. J. Roy. Meteor. Soc., 110, 723745, https://doi.org/10.1002/qj.49711046510.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, https://doi.org/10.1175/MWR3199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iacono, M. J., E. J. Mlawer, S. A. Clough, and J.-J. Morcrette, 2000: Impact of an improved longwave radiation model, RRTM, on the energy budget and thermodynamic properties of the NCAR Community Climate Model, CCM3. J. Geophys. Res., 105, 14 87314 890, https://doi.org/10.1029/2000JD900091.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ito, K., Y. Ishikawa, Y. Miyamoto, and T. Awaji, 2011: Short-time-scale processes in a mature hurricane as a response to sea surface fluctuations. J. Atmos. Sci., 68, 22502272, https://doi.org/10.1175/JAS-D-10-05022.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiménez, P., J. Dudhia, J. F. Gonzàlez-Rouco, and J. Navarro, 2012: A revised scheme for the WRF surface layer formulation. Mon. Wea. Rev., 140, 898918, https://doi.org/10.1175/MWR-D-11-00056.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170181, https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and J. M. Fritsch, 1990: A one-dimensional entraining/detraining plume model and its application in convective parameterization. J. Atmos. Sci., 47, 27842802, https://doi.org/10.1175/1520-0469(1990)047<2784:AODEPM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knaff, J. A., S. P. Longmore, and D. A. Molenar, 2014: An objective satellite-based tropical cyclone size climatology. J. Climate, 27, 455476, https://doi.org/10.1175/JCLI-D-13-00096.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, C., K. K. Cheung, W. Fang, and R. L. Elsberry, 2010: Initial maintenance of tropical cyclone size in the western North Pacific. Mon. Wea. Rev., 138, 32073223, https://doi.org/10.1175/2010MWR3023.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, I.-I., C.-H. Chen, I.-F. Pun, W. T. Liu, and C.-C. Wu, 2009: Warm ocean anomaly, air sea fluxes, and the rapid intensification of Tropical Cyclone Nargis. Geophys. Res. Lett., 36, L03817, https://doi.org/10.1029/2008GL035815.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, I.-I., M.-D. Chou, and C.-C. Wu, 2011: The impact of a warm ocean eddy on Typhoon Morakot (2009)—A preliminary study from satellite observations and numerical modeling. Terr. Atmos. Oceanic Sci., 22, 661671, https://doi.org/10.3319/TAO.2011.08.19.01(TM).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, I.-I., and Coauthors, 2013: An ocean coupling potential intensity index for tropical cyclones. Geophys. Res. Lett., 40, 18781882, https://doi.org/10.1002/grl.50091.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, K. S., and J. C. Chan, 2002: Synoptic flow patterns associated with small and large tropical cyclones over the western North Pacific. Mon. Wea. Rev., 130, 21342142, https://doi.org/10.1175/1520-0493(2002)130<2134:SFPAWS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, X., H. Yu, and X. Lei, 2011: Statistics for size and radial wind profile of tropical cyclones in the western North Pacific. Acta Meteor. Sin., 25, 104112, https://doi.org/10.1007/s13351-011-0008-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, Z., J. Fei, L. Liu, X. Huang, and X. Cheng, 2013: Effects of the cold core eddy on tropical cyclone intensity and structure under idealized air–sea interaction conditions. Mon. Wea. Rev., 141, 12851303, https://doi.org/10.1175/MWR-D-12-00123.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, Z., J. Fei, X. Huang, and X. Cheng, 2015: Contributions of surface sensible heat fluxes to tropical cyclone. Part I: Evolution of tropical cyclone intensity and structure. J. Atmos. Sci., 72, 120140, https://doi.org/10.1175/JAS-D-14-0199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marks, F., and Coauthors, 1998: Landfalling tropical cyclones: Forecast problems and associated research opportunities. Bull. Amer. Meteor. Soc., 79, 305323, https://doi.org/10.1175/1520-0477(1998)079<0305:LTCFPA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., I. M. Held, and K. H. Cook, 1987: Evaporation–wind feedback and low-frequency variability in the tropical atmosphere. J. Atmos. Sci., 44, 23412348, https://doi.org/10.1175/1520-0469(1987)044<2341:EWFALF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paulson, C. A., 1970: The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer. J. Appl. Meteor., 9, 857861, https://doi.org/10.1175/1520-0450(1970)009<0857:TMROWS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peng, C.-H., and C.-C. Wu, 2020: The impact of outer-core surface heat fluxes on the convective activities and rapid intensification of tropical cyclones. J. Atmos. Sci., 77, 39073927, https://doi.org/10.1175/JAS-D-19-0348.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Powell, M. D., P. J. Vickery, and T. A. Reinhold, 2003: Reduced drag coefficient for high wind speeds in tropical cyclones. Nature, 422, 279283, https://doi.org/10.1038/nature01481.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Radu, R., R. Toumi, and J. Phau, 2014: Influence of atmospheric and sea-surface temperature on the size of Hurricane Catarina. Quart. J. Roy. Meteor. Soc., 140, 17781784, https://doi.org/10.1002/qj.2232.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riehl, H., 1950: A model for hurricane formation. J. Appl. Phys., 21, 917925, https://doi.org/10.1063/1.1699784.

  • Ruiz-Arias, J., J. Dudhia, F. J. Santos-Alamillos, and D. Pozo-Vázquez, 2013: Surface clear-sky shortwave radiative closure intercomparisons in the Weather Research and Forecasting Model. J. Geophys. Res. Atmos., 118, 99019913, https://doi.org/10.1002/jgrd.50778.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schenkel, B. A., 2017: Are multiple tropical cyclone events similar among basins? J. Climate, 30, 58055813, https://doi.org/10.1175/JCLI-D-17-0088.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shen, L.-Z., and C.-C. Wu, 2018: The effect of surface heat fluxes in the outer region on the size of Typhoon Megi (2016). 33rd Conf. on Hurricanes and Tropical Meteorology, Ponte Vedra, FL, Amer. Meteor. Soc., 5C.7, https://ams.confex.com/ams/33HURRICANE/webprogram/Paper339441.html.

  • Tsuji, H., H. Itoh, and K. Nakajima, 2016: Mechanism governing the size change of tropical cyclone-like vortices. J. Meteor. Soc. Japan, 94, 219236, https://doi.org/10.2151/jmsj.2016-012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tuleya, R. E., and Y. Kurihara, 1975: The energy and angular momentum budgets of a three-dimensional tropical cyclone model. J. Atmos. Sci., 32, 287301, https://doi.org/10.1175/1520-0469(1975)032<0287:TEAAMB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., and C.-C. Wu, 2004: Current understanding of tropical cyclone structure and intensity changes—A review. Meteor. Atmos. Phys., 87, 257278, https://doi.org/10.1007/s00703-003-0055-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webb, E. K., 1970: Profile relationships: The log-linear range, and extension to strong stability. Quart. J. Roy. Meteor. Soc., 96, 6790, https://doi.org/10.1002/qj.49709640708.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., 1995: Mature structure and evolution. Global perspectives on tropical cyclones, WMO Tech. Doc. WMO/TD-693, 21–62.

  • Wu, C.-C., C.-Y. Lee, and I.-I. Lin, 2007: The effect of the ocean eddy on tropical cyclone intensity. J. Atmos. Sci., 64, 35623578, https://doi.org/10.1175/JAS4051.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, C.-C., W.-T. Tu, I.-F. Pun, I.-I. Lin, and M. S. Peng, 2016: Tropical cyclone-ocean interaction in Typhoon Megi (2010)—A synergy study based on ITOP observations and atmosphere-ocean coupled model simulations. J. Geophys. Res. Atmos., 121, 153167, https://doi.org/10.1002/2015JD024198.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, J., and Y. Wang, 2010a: Sensitivity of tropical cyclone inner-core size and intensity to the radial distribution of surface entropy flux. J. Atmos. Sci., 67, 18311852, https://doi.org/10.1175/2010JAS3387.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, J., and Y. Wang, 2010b: Sensitivity of the simulated tropical cyclone inner-core size to the initial vortex size. Mon. Wea. Rev., 138, 41354157, https://doi.org/10.1175/2010MWR3335.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, D.-L., and R. A. Anthes, 1982: A high–resolution model of the planetary boundary layer—Sensitivity tests and comparisons with SESAME-79 data. J. Appl. Meteor., 21, 15941609, https://doi.org/10.1175/1520-0450(1982)021<1594:AHRMOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, F., and K. Emanuel, 2016: On the role of surface fluxes and WISHE in tropical cyclone intensification. J. Atmos. Sci., 73, 20112019, https://doi.org/10.1175/JAS-D-16-0011.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 83 83 83
Full Text Views 37 37 37
PDF Downloads 38 38 38

The Role of Surface Heat Fluxes on the Size of Typhoon Megi (2016)

View More View Less
  • 1 Department of Atmospheric Sciences, National Taiwan University, Taipei, Taiwan
  • 2 National Center for Atmospheric Research, Boulder, Colorado
© Get Permissions
Restricted access

Abstract

This study attempts to understand how surface heat fluxes in different storm regions affect tropical cyclone (TC) size. The Advanced Research version of the Weather Research and Forecasting (ARW-WRF) Model (version 3.5.1) is used to simulate Typhoon Megi (2016). A series of numerical experiments are carried out, including a control simulation and several sensitivity experiments with surface heat fluxes suppressed in different TC regions [to mimic the reduction of the wind-induced surface heat exchange (WISHE) feedback in the inner and/or outer core]. The results show that with surface heat fluxes suppressed in the entire domain, the TC tends to be smaller. Meanwhile, the TC size is more sensitive to the surface heat flux change in the outer core than to that in the inner core. Suppressing surface heat fluxes can weaken the rainbands around the suppressed area, which in turn slows down the secondary circulation. When the surface heat flux is suppressed in the inner-core region, the weakening of the secondary circulation associated with the diminished inner rainbands is limited to the inner-core region, and only slightly affects the absolute angular momentum import from the outer region, thus having negligible impact on TC size. However, suppression of surface heat fluxes in the outer-core region leads to less active outer rainbands and a more substantial weakening of secondary circulation. This results in less absolute momentum import from the outer region and in turn a smaller TC.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Chun-Chieh Wu, cwu@typhoon.as.ntu.edu.tw

Abstract

This study attempts to understand how surface heat fluxes in different storm regions affect tropical cyclone (TC) size. The Advanced Research version of the Weather Research and Forecasting (ARW-WRF) Model (version 3.5.1) is used to simulate Typhoon Megi (2016). A series of numerical experiments are carried out, including a control simulation and several sensitivity experiments with surface heat fluxes suppressed in different TC regions [to mimic the reduction of the wind-induced surface heat exchange (WISHE) feedback in the inner and/or outer core]. The results show that with surface heat fluxes suppressed in the entire domain, the TC tends to be smaller. Meanwhile, the TC size is more sensitive to the surface heat flux change in the outer core than to that in the inner core. Suppressing surface heat fluxes can weaken the rainbands around the suppressed area, which in turn slows down the secondary circulation. When the surface heat flux is suppressed in the inner-core region, the weakening of the secondary circulation associated with the diminished inner rainbands is limited to the inner-core region, and only slightly affects the absolute angular momentum import from the outer region, thus having negligible impact on TC size. However, suppression of surface heat fluxes in the outer-core region leads to less active outer rainbands and a more substantial weakening of secondary circulation. This results in less absolute momentum import from the outer region and in turn a smaller TC.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Chun-Chieh Wu, cwu@typhoon.as.ntu.edu.tw
Save