• Ashley, W. S., 2007: Spatial and temporal analysis of tornado fatalities in the United States: 1880–2005. Wea. Forecasting, 22, 12141228, https://doi.org/10.1175/2007WAF2007004.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ashley, W. S., A. J. Krmenec, and R. Schwantes, 2008: Vulnerability due to nocturnal tornadoes. Wea. Forecasting, 23, 795807, https://doi.org/10.1175/2008WAF2222132.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ashley, W. S., A. M. Haberlie, and J. Strohm, 2019: A climatology of quasi-linear convective systems and their hazards in the United States. Wea. Forecasting, 34, 16051631, https://doi.org/10.1175/WAF-D-19-0014.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Atkins, N. T., and M. St. Laurent, 2009a: Bow echo mesovortices. Part I: Processes that influence their damaging potential. Mon. Wea. Rev., 137, 14971513, https://doi.org/10.1175/2008MWR2649.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Atkins, N. T., and M. St. Laurent, 2009b: Bow echo mesovortices. Part II: Their genesis. Mon. Wea. Rev., 137, 15141532, https://doi.org/10.1175/2008MWR2650.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Atkins, N. T., J. M. Arnott, R. W. Przybylinski, R. A. Wolf, and B. D. Ketcham, 2004: Vortex structure and evolution within bow echoes. Part I: Single-Doppler and damage analysis of the 29 June 1998 derecho. Mon. Wea. Rev., 132, 22242242, https://doi.org/10.1175/1520-0493(2004)132<2224:VSAEWB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Atkins, N. T., C. S. Bouchard, R. W. Przybylinski, R. J. Trapp, and G. Schmocker, 2005: Damaging surface wind mechanisms within the 10 June 2003 Saint Louis bow echo during BAMEX. Mon. Wea. Rev., 133, 22752296, https://doi.org/10.1175/MWR2973.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Atkins, N. T., A. McGee, R. Ducharme, R. M. Wakimoto, and J. Wurman, 2012: The LaGrange tornado during VORTEX2. Part II: Photogrammetric analysis of the tornado combined with dual-Doppler radar data. Mon. Wea. Rev., 140, 29392958, https://doi.org/10.1175/MWR-D-11-00285.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brooks, H. E., 2004: On the relationship of tornado path length and width to intensity. Wea. Forecasting, 19, 310319, https://doi.org/10.1175/1520-0434(2004)019<0310:OTROTP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brotzge, J. A., S. E. Nelson, R. L. Thompson, and B. T. Smith, 2013: Tornado probability of detection and lead time as a function of convective mode and environmental parameters. Wea. Forecasting, 28, 12611276, https://doi.org/10.1175/WAF-D-12-00119.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and J. M. Fritsch, 2002: A benchmark simulation for moist nonhydrostatic numerical models. Mon. Wea. Rev., 130, 29172928, https://doi.org/10.1175/1520-0493(2002)130<2917:ABSFMN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carbone, R. E., 1982: A severe frontal rainband. Part I. Stormwide hydrodynamic structure. J. Atmos. Sci., 39, 258279, https://doi.org/10.1175/1520-0469(1982)039<0258:ASFRPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carbone, R. E., 1983: A severe frontal rainband. Part II: Tornado parent vortex circulation. J. Atmos. Sci., 40, 26392654, https://doi.org/10.1175/1520-0469(1983)040<2639:ASFRPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coffer, B. E., and M. D. Parker, 2017: Simulated supercells in nontornadic and tornadic VORTEX2 environments. Mon. Wea. Rev., 145, 149180, https://doi.org/10.1175/MWR-D-16-0226.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Conrad, D. M., and K. R. Knupp, 2019: Doppler radar observations of horizontal shearing instability in quasi-linear convective systems. Mon. Wea. Rev., 147, 12971318, https://doi.org/10.1175/MWR-D-18-0257.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1980: Stratocumulus-capped mixed layers derived from a three-dimensional model. Bound.-Layer Meteor., 18, 495527, https://doi.org/10.1007/BF00119502.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evans, J. S., and C. A. Doswell III, 2001: Examination of derecho environments using proximity soundings. Wea. Forecasting, 16, 329342, https://doi.org/10.1175/1520-0434(2001)016<0329:EODEUP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fiedler, B. H., and R. Rotunno, 1986: A theory for the maximum windspeeds in tornado-like vortices. J. Atmos. Sci., 43, 23282340, https://doi.org/10.1175/1520-0469(1986)043<2328:ATOTMW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flournoy, M. D., and M. C. Coniglio, 2019: Origins of vorticity in a simulated tornadic mesovortex observed during PECAN on 6 July 2015. Mon. Wea. Rev., 147, 107134, https://doi.org/10.1175/MWR-D-18-0221.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flournoy, M. D., M. C. Coniglio, E. N. Rasmussen, J. C. Furtado, and B. E. Coffer, 2020: Modes of storm-scale variability and tornado potential in VORTEX2 near- and far-field tornadic environments. Mon. Wea. Rev., 148, 41854207, https://doi.org/10.1175/MWR-D-20-0147.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • French, A. J., and M. D. Parker, 2012: Observations of mergers between squall lines and isolated supercell thunderstorms. Wea. Forecasting, 27, 255278, https://doi.org/10.1175/WAF-D-11-00058.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Funk, T. W., K. E. Darmofal, J. D. Kirkpatrick, V. L. Dewald, R. W. Przybylinski, G. K. Schmocker, and Y.-J. Lin, 1999: Storm reflectivity and mesocyclone evolution associated with the 15 April 1994 squall line over Kentucky and southern Indiana. Wea. Forecasting, 14, 976993, https://doi.org/10.1175/1520-0434(1999)014<0976:SRAMEA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haurwitz, B., 1949: The instability of wind discontinuities and shear zones in planetary atmospheres. J. Meteor., 6, 200206, https://doi.org/10.1175/1520-0469(1949)006<0200:TIOWDA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houston, A. L., 2017: The possible role of density current dynamics in the generation of low-level vertical vorticity in supercells. J. Atmos. Sci., 74, 31913208, https://doi.org/10.1175/JAS-D-16-0227.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kobayashi, F., Y. Sugawara, M. Imai, M. Matsui, A. Yoshida, and Y. Tamura, 2007: Tornado generation in a narrow cold frontal rainband—Fujisawa tornado on April 20, 2006. SOLA, 3, 2124, https://doi.org/10.2151/sola.2007-006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lebo, Z. J., and H. Morrison, 2015: Effects of horizontal and vertical grid spacing on mixing in simulated squall lines and implications for convective strength and structure. Mon. Wea. Rev., 143, 43554375, https://doi.org/10.1175/MWR-D-15-0154.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, B. D., and R. B. Wilhelmson, 1997a: The numerical simulation of non-supercell tornadogenesis. Part I: Initiation and evolution of pretornadic misocyclone circulations along a dry outflow boundary. J. Atmos. Sci., 54, 3260, https://doi.org/10.1175/1520-0469(1997)054<0032:TNSONS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, B. D., and R. B. Wilhelmson, 1997b: The numerical simulation of non-supercell tornadogenesis. Part II: Evolution of a family of tornadoes along a weak outflow boundary. J. Atmos. Sci., 54, 23872415, https://doi.org/10.1175/1520-0469(1997)054<2387:TNSONT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mansell, E. R., C. L. Ziegler, and E. C. Bruning, 2010: Simulated electrification of a small thunderstorm with two-moment bulk microphysics. J. Atmos. Sci., 67, 171194, https://doi.org/10.1175/2009JAS2965.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marion, G. R., and R. J. Trapp, 2019: The dynamical coupling of convective updrafts, downdrafts, and cold pools in simulated supercell thunderstorms. J. Geophys. Res. Atmos., 124, 664683, https://doi.org/10.1029/2018JD029055.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marion, G. R., R. J. Trapp, and S. W. Nesbitt, 2019: Using overshooting top area to discriminate potential for large, intense tornadoes. Geophys. Res. Lett., 46, 12 52012 526, https://doi.org/10.1029/2019GL084099.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., 2018: A review of the various treatments of the surface momentum flux in severe storms simulations: Assumptions, deficiencies, and alternatives. 29th Conf. on Severe Local Storms, Stowe, VT, Amer. Meteor. Soc., 7.3, https://ams.confex.com/ams/29SLS/webprogram/Paper348116.html.

  • Markowski, P. M., and Y. Richardson, 2014: The influence of environmental low-level shear and cold pools on tornadogenesis: Insights from idealized simulations. J. Atmos. Sci., 71, 243275, https://doi.org/10.1175/JAS-D-13-0159.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., and G. H. Bryan, 2016: LES of laminar flow in the PBL: A potential problem for convective storm simulations. Mon. Wea. Rev., 144, 18411850, https://doi.org/10.1175/MWR-D-15-0439.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., Y. Richardson, M. Majcen, J. Marquis, and J. Wurman, 2011: Characteristics of the wind field in three nontornadic low-level mesocyclones observed by the Doppler on Wheels radars. Electron. J. Severe Storms Meteor., 6 (3), http://www.ejssm.org/ojs/index.php/ejssm/article/view/75/63.

    • Search Google Scholar
    • Export Citation
  • Miles, J. W., and L. N. Howard, 1964: Note on a heterogeneous shear flow. J. Fluid Mech., 20, 331336, https://doi.org/10.1017/S0022112064001252.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mulder, K. J., and D. M. Schultz, 2015: Climatology, storm morphologies, and environments of tornadoes in the British Isles: 1980–2012. Mon. Wea. Rev., 143, 22242240, https://doi.org/10.1175/MWR-D-14-00299.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Orf, L., R. Wilhelmson, B. Lee, C. Finley, and A. Houston, 2017: Evolution of a long-track violent tornado within a simulated supercell. Bull. Amer. Meteor. Soc., 98, 4568, https://doi.org/10.1175/BAMS-D-15-00073.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Przybylinski, R. W., 1995: The bow echo: Observations, numerical simulations, and severe weather detection methods. Wea. Forecasting, 10, 203218, https://doi.org/10.1175/1520-0434(1995)010<0203:TBEONS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Przybylinski, R. W., G. K. Schmocker, and Y. J. Lin, 2000: A study of storm and vortex morphology during the ‘intensifying stage’ of severe wind mesoscale convective systems. Preprints, 20th Conf. on Severe Local Storms, Orlando, FL, Amer. Meteor. Soc., 6.2, https://ams.confex.com/ams/Sept2000/webprogram/Paper16397.html.

  • Richter, H., J. Peter, and S. Collis, 2014: Analysis of a destructive wind storm on 16 November 2008 in Brisbane, Australia. Mon. Wea. Rev., 142, 30383060, https://doi.org/10.1175/MWR-D-13-00405.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotunno, R., 1985: On the rotation and propagation of simulated supercell thunderstorms. J. Atmos. Sci., 42, 271292, https://doi.org/10.1175/1520-0469(1985)042<0271:OTRAPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotunno, R., J. B. Klemp, and M. L. Weisman, 1988: A theory for strong, long-lived squall lines. J. Atmos. Sci., 45, 463485, https://doi.org/10.1175/1520-0469(1988)045<0463:ATFSLL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schaumann, J. S., and R. W. Przybylinski, 2012: Operational application of 0–3 km bulk shear vectors in assessing quasi linear convective system mesovortex and tornado potential. 26th Conf. on Severe Local Storms, Nashville, TN, Amer. Meteor. Soc., 142, https://ams.confex.com/ams/26SLS/webprogram/Paper212008.html.

  • Schenkman, A. D., M. Xue, and A. Shapiro, 2012: Tornadogenesis in a simulated mesovortex within a mesoscale convective system. J. Atmos. Sci., 69, 33723390, https://doi.org/10.1175/JAS-D-12-038.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sessa, M. F., and R. J. Trapp, 2020: Observed relationship between tornado intensity and pre-tornadic mesocyclone characteristics. Wea. Forecasting, 35, 12431261, https://doi.org/10.1175/WAF-D-19-0099.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smart, D. J., and K. A. Browning, 2009: Morphology and evolution of cold-frontal misocyclones. Quart. J. Roy. Meteor. Soc., 135, 381393, https://doi.org/10.1002/qj.399.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, B. T., R. L. Thompson, J. S. Grams, C. Broyles, and H. E. Brooks, 2012: Convective modes for significant severe thunderstorms in the contiguous United States. Part I: Storm classification and climatology. Wea. Forecasting, 27, 11141135, https://doi.org/10.1175/WAF-D-11-00115.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sugawara, Y., and F. Kobayashi, 2009: Vertical structure of misocyclones along a narrow cold frontal rainband. J. Meteor. Soc. Japan, 87, 497503, https://doi.org/10.2151/jmsj.87.497.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, R. L., B. T. Smith, J. S. Grams, A. R. Dean, and C. Broyles, 2012: Convective modes for significant severe thunderstorms in the contiguous United States. Part II: Supercell and QLCS tornado environments. Wea. Forecasting, 27, 11361154, https://doi.org/10.1175/WAF-D-11-00116.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trapp, R. J., 2000: A clarification of vortex breakdown and tornadogenesis. Mon. Wea. Rev., 128, 888895, https://doi.org/10.1175/1520-0493(2000)128<0888:ACOVBA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trapp, R. J., and M. L. Weisman, 2003: Low-level mesovortices within squall lines and bow echoes. Part II: Their genesis and implications. Mon. Wea. Rev., 131, 28042823, https://doi.org/10.1175/1520-0493(2003)131<2804:LMWSLA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trapp, R. J., E. D. Mitchell, G. A. Tipton, D. W. Effertz, A. I. Watson, D. L. Andra Jr., and M. A. Magsig, 1999: Descending and nondescending tornadic vortex signatures detected by WSR-88Ds. Wea. Forecasting, 14, 625639, https://doi.org/10.1175/1520-0434(1999)014<0625:DANTVS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trapp, R. J., S. A. Tessendorf, E. S. Godfrey, and H. E. Brooks, 2005: Tornadoes from squall lines and bow echoes. Part I: Climatological distribution. Wea. Forecasting, 20, 2334, https://doi.org/10.1175/WAF-835.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trapp, R. J., G. R. Marion, and S. W. Nesbitt, 2017: The regulation of tornado intensity by updraft width. J. Atmos. Sci., 74, 41994211, https://doi.org/10.1175/JAS-D-16-0331.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trapp, R. J., G. R. Marion, and S. W. Nesbitt, 2018: Reply to “Comments on ‘The regulation of tornado intensity by updraft width.’” J. Atmos. Sci., 75, 40574061, https://doi.org/10.1175/JAS-D-18-0276.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and R. J. Trapp, 2003: Low-level mesovortices within squall lines and bow echoes. Part I: Overview and dependence on environmental shear. Mon. Wea. Rev., 131, 27792803, https://doi.org/10.1175/1520-0493(2003)131<2779:LMWSLA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheatley, D. M., and R. J. Trapp, 2008: The effect of mesoscale heterogeneity on the genesis and structure of mesovortices within quasi-linear convective systems. Mon. Wea. Rev., 136, 42204241, https://doi.org/10.1175/2008MWR2294.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheatley, D. M., R. J. Trapp, and N. T. Atkins, 2006: Radar and damage analysis of severe bow echoes observed during BAMEX. Mon. Wea. Rev., 134, 791806, https://doi.org/10.1175/MWR3100.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wicker, L. J., and R. B. Wilhelmson, 1995: Simulation and analysis of tornado development and decay within a three-dimensional supercell thunderstorm. J. Atmos. Sci., 52, 26752703, https://doi.org/10.1175/1520-0469(1995)052<2675:SAAOTD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 101 101 101
Full Text Views 30 30 30
PDF Downloads 37 37 37

Controls of Quasi-Linear Convective System Tornado Intensity

View More View Less
  • 1 University of Illinois at Urbana–Champaign, Urbana, Illinois
© Get Permissions
Restricted access

Abstract

Although tornadoes produced by quasi-linear convective systems (QLCSs) generally are weak and short lived, they have high societal impact due to their proclivity to develop over short time scales, within the cool season, and during nighttime hours. Precisely why they are weak and short lived is not well understood, although recent work suggests that QLCS updraft width may act as a limitation to tornado intensity. Herein, idealized simulations of tornadic QLCSs are performed with variations in hodograph shape and length as well as initiation mechanism to determine the controls of tornado intensity. Generally, the addition of hodograph curvature in these experiments results in stronger, longer-lived tornadic-like vortices (TLVs). A strong correlation between low-level mesocyclone width and TLV intensity is identified (R2 = 0.61), with a weaker correlation in the low-level updraft intensity (R2 = 0.41). The tilt and depth of the updraft are found to have little correlation to tornado intensity. Comparing QLCS and isolated supercell updrafts within these simulations, the QLCS updrafts are less persistent, with the standard deviations of low-level vertical velocity and updraft helicity approximately 48% and 117% greater, respectively. A forcing decomposition reveals that the QLCS cold pool plays a direct role in the development of the low-level updraft, providing the benefit of additional forcing for ascent while also having potentially deleterious effects on both the low-level updraft and near-surface rotation. The negative impact of the cold pool ultimately serves to limit the persistence of rotating updraft cores within the QLCS.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Geoffrey R. Marion, gmarion2@illinois.edu

Abstract

Although tornadoes produced by quasi-linear convective systems (QLCSs) generally are weak and short lived, they have high societal impact due to their proclivity to develop over short time scales, within the cool season, and during nighttime hours. Precisely why they are weak and short lived is not well understood, although recent work suggests that QLCS updraft width may act as a limitation to tornado intensity. Herein, idealized simulations of tornadic QLCSs are performed with variations in hodograph shape and length as well as initiation mechanism to determine the controls of tornado intensity. Generally, the addition of hodograph curvature in these experiments results in stronger, longer-lived tornadic-like vortices (TLVs). A strong correlation between low-level mesocyclone width and TLV intensity is identified (R2 = 0.61), with a weaker correlation in the low-level updraft intensity (R2 = 0.41). The tilt and depth of the updraft are found to have little correlation to tornado intensity. Comparing QLCS and isolated supercell updrafts within these simulations, the QLCS updrafts are less persistent, with the standard deviations of low-level vertical velocity and updraft helicity approximately 48% and 117% greater, respectively. A forcing decomposition reveals that the QLCS cold pool plays a direct role in the development of the low-level updraft, providing the benefit of additional forcing for ascent while also having potentially deleterious effects on both the low-level updraft and near-surface rotation. The negative impact of the cold pool ultimately serves to limit the persistence of rotating updraft cores within the QLCS.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Geoffrey R. Marion, gmarion2@illinois.edu
Save