Tropical Cyclone Resistance to Strong Environmental Shear

Yi Dai Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida

Search for other papers by Yi Dai in
Current site
Google Scholar
PubMed
Close
,
Sharanya J. Majumdar Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida

Search for other papers by Sharanya J. Majumdar in
Current site
Google Scholar
PubMed
Close
, and
David S. Nolan Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida

Search for other papers by David S. Nolan in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

It is widely known that strong vertical wind shear (exceeding 10 m s−1) often weakens tropical cyclones (TCs). However, in some circumstances, a TC is able to resist this strong shear and even restrengthen. To better understand this phenomenon, a series of idealized simulations are conducted, followed by a statistical investigation of 40 years of Northern Hemisphere TCs. In the idealized simulations, a TC is embedded within a time-varying point-downscaling framework, which is used to gradually increase the environmental vertical wind shear to 14 m s−1 and then hold it constant. This controlled framework also allows for the separation of the TC-induced flow from the prescribed environmental flow. The TC-induced outflow is found to withstand the strong upper-tropospheric environmental flow, and this is manifested in the TC-induced shear difference (TCSD) vector. The TCSD vector, together with the environmental shear vector, defines an azimuthal range within which most of the asymmetric convection is located. The statistical analysis confirms the findings from the idealized simulations, and the results are not strongly sensitive to the TC intensity or basin. Moreover, compared with total shear, the inclusion of TCSD information creates a slightly better correlation with TC intensity change. Overall, the TCSD vector serves as a diagnostic to explain the ability of a TC to resist strong environmental shear through its outflow, and it could potentially be used as a parameter to predict future intensity change.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

This article is included in the Tropical Cyclone Intensity Experiment (TCI) Special Collection.

Corresponding author: Dr. Yi Dai, yidai@lbl.gov

Abstract

It is widely known that strong vertical wind shear (exceeding 10 m s−1) often weakens tropical cyclones (TCs). However, in some circumstances, a TC is able to resist this strong shear and even restrengthen. To better understand this phenomenon, a series of idealized simulations are conducted, followed by a statistical investigation of 40 years of Northern Hemisphere TCs. In the idealized simulations, a TC is embedded within a time-varying point-downscaling framework, which is used to gradually increase the environmental vertical wind shear to 14 m s−1 and then hold it constant. This controlled framework also allows for the separation of the TC-induced flow from the prescribed environmental flow. The TC-induced outflow is found to withstand the strong upper-tropospheric environmental flow, and this is manifested in the TC-induced shear difference (TCSD) vector. The TCSD vector, together with the environmental shear vector, defines an azimuthal range within which most of the asymmetric convection is located. The statistical analysis confirms the findings from the idealized simulations, and the results are not strongly sensitive to the TC intensity or basin. Moreover, compared with total shear, the inclusion of TCSD information creates a slightly better correlation with TC intensity change. Overall, the TCSD vector serves as a diagnostic to explain the ability of a TC to resist strong environmental shear through its outflow, and it could potentially be used as a parameter to predict future intensity change.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

This article is included in the Tropical Cyclone Intensity Experiment (TCI) Special Collection.

Corresponding author: Dr. Yi Dai, yidai@lbl.gov
Save
  • Alvey, G. R., E. Zipser, and J. Zawislak, 2020: How does Hurricane Edouard (2014) evolve toward symmetry before rapid intensification? A high-resolution ensemble study. J. Atmos. Sci., 77, 13291351, https://doi.org/10.1175/JAS-D-18-0355.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Black, M. L., R. W. Burpee, and F. D. Marks Jr., 1996: Vertical motion characteristics of tropical cyclones determined with airborne Doppler radial velocities. J. Atmos. Sci., 53, 18871909, https://doi.org/10.1175/1520-0469(1996)053<1887:VMCOTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Black, M. L., J. F. Gamache, F. D. Marks, C. Samsury, and H. E. Willoughby, 2002: Eastern Pacific Hurricanes Jimena of 1991 and Olivia of 1994: The effect of vertical shear on structure and intensity. Mon. Wea. Rev., 130, 22912312, https://doi.org/10.1175/1520-0493(2002)130<2291:EPHJOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Corbosiero, K. L., and J. Molinari, 2002: The effects of vertical wind shear on the distribution of convection in tropical cyclones. Mon. Wea. Rev., 130, 21102123, https://doi.org/10.1175/1520-0493(2002)130<2110:TEOVWS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, Y., S. J. Majumdar, and D. S. Nolan, 2017: Secondary eyewall formation in tropical cyclones by outflow–jet interaction. J. Atmos. Sci., 74, 19411958, https://doi.org/10.1175/JAS-D-16-0322.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, Y., S. J. Majumdar, and D. S. Nolan, 2019: The outflow–rainband relationship induced by environmental flow around tropical cyclones. J. Atmos. Sci., 76, 18451863, https://doi.org/10.1175/JAS-D-18-0208.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, C. A., S. C. Jones, and M. Riemer, 2008: Hurricane vortex dynamics during Atlantic extratropical transition. J. Atmos. Sci., 65, 714736, https://doi.org/10.1175/2007JAS2488.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMaria, M., 1996: The effect of vertical shear on tropical cyclone intensity change. J. Atmos. Sci., 53, 20762088, https://doi.org/10.1175/1520-0469(1996)053<2076:TEOVSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Didlake, A. C., P. D. Reasor, R. F. Rogers, and W. Lee, 2018: Dynamics of the transition from spiral rainbands to a secondary eyewall in Hurricane Earl (2010). J. Atmos. Sci., 75, 29092929, https://doi.org/10.1175/JAS-D-17-0348.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunion, J. P., 2011: Rewriting the climatology of the tropical North Atlantic and Caribbean Sea atmosphere. J. Climate, 24, 893908, https://doi.org/10.1175/2010JCLI3496.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elsberry, R. L., and R. A. Jefferies, 1996: Vertical wind shear influences on tropical cyclone formation and intensification during TCM-92 and TCM-93. Mon. Wea. Rev., 124, 13741387, https://doi.org/10.1175/1520-0493(1996)124<1374:VWSIOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Finocchio, P. M., and S. J. Majumdar, 2017a: The predictability of idealized tropical cyclones in environments with time-varying vertical wind shear. J. Adv. Model. Earth Syst., 9, 28362862, https://doi.org/10.1002/2017MS001168.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Finocchio, P. M., and S. J. Majumdar, 2017b: A statistical perspective on wind profiles and vertical wind shear in tropical cyclone environments. Mon. Wea. Rev., 145, 361378, https://doi.org/10.1175/MWR-D-16-0221.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Finocchio, P. M., S. J. Majumdar, D. S. Nolan, and M. Iskandarani, 2016: Idealized tropical cyclone responses to the height and depth of environmental vertical wind shear. Mon. Wea. Rev., 144, 21552175, https://doi.org/10.1175/MWR-D-15-0320.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fischer, M. S., B. H. Tang, and K. L. Corbosiero, 2017: Assessing the influence of upper-tropospheric troughs on tropical cyclone intensification rates after genesis. Mon. Wea. Rev., 145, 12951313, https://doi.org/10.1175/MWR-D-16-0275.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frank, W. M., and E. A. Ritchie, 2001: Effects of vertical wind shear on the intensity and structure of numerically simulated hurricanes. Mon. Wea. Rev., 129, 22492269, https://doi.org/10.1175/1520-0493(2001)129<2249:EOVWSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guimond, S. R., G. M. Heymsfield, and F. J. Turk, 2010: Multiscale observations of Hurricane Dennis (2005): The effects of hot towers on rapid intensification. J. Atmos. Sci., 67, 633654, https://doi.org/10.1175/2009JAS3119.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., and J.-O. J. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129151.

  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, https://doi.org/10.1175/MWR3199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, S. C., 1995: The evolution of vortices in vertical shear: I: Initially barotropic vortices. Quart. J. Roy. Meteor. Soc., 121, 821851, https://doi.org/10.1002/qj.49712152406.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knapp, K. R., and Coauthors, 2014: NOAA Climate Data Record (CDR) of Gridded Satellite Data from ISCCP B1 (GridSat-B1) Infrared Channel Brightness Temperature, version 2. NOAA National Centers for Environmental Information, https://doi.org/10.7289/V59P2ZKR.

    • Crossref
    • Export Citation
  • Komaromi, W. A., and J. D. Doyle, 2017: Tropical cyclone outflow and warm core structure as revealed by HS3 dropsonde data. Mon. Wea. Rev., 145, 13391359, https://doi.org/10.1175/MWR-D-16-0172.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Komaromi, W. A., and J. D. Doyle, 2018: On the dynamics of tropical cyclone and trough interactions. J. Atmos. Sci., 75, 26872709, https://doi.org/10.1175/JAS-D-17-0272.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miyamoto, Y., and D. S. Nolan, 2018: Structural changes preceding rapid intensification in tropical cyclones as shown in a large ensemble of idealized simulations. J. Atmos. Sci., 75, 555569, https://doi.org/10.1175/JAS-D-17-0177.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molinari, J., and D. Vollaro, 2010: Rapid intensification of a sheared tropical storm. Mon. Wea. Rev., 138, 38693885, https://doi.org/10.1175/2010MWR3378.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nguyen, L. T., R. F. Rogers, and P. D. Reasor, 2017: Thermodynamic and kinematic influences on precipitation symmetry in sheared tropical cyclones: Bertha and Cristobal (2014). Mon. Wea. Rev., 145, 44234446, https://doi.org/10.1175/MWR-D-17-0073.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., 2011: Evaluating environmental favorableness for tropical cyclone development with the method of point downscaling. J. Adv. Model. Earth Syst., 3, M08001, https://doi.org/10.1029/2011MS000063.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., Y. Moon, and D. P. Stern, 2007: Tropical cyclone intensification from asymmetric convection: Energetics and efficiency. J. Atmos. Sci., 64, 33773405, https://doi.org/10.1175/JAS3988.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Onderlinde, M. J., and D. S. Nolan, 2017: The tropical cyclone response to changing wind shear using the method of time-varying point-downscaling. J. Adv. Model. Earth Syst., 9, 908931, https://doi.org/10.1002/2016MS000796.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paterson, L. A., B. N. Hanstrum, N. E. Davidson, and H. C. Weber, 2005: Influence of environmental vertical wind shear on the intensity of hurricane-strength tropical cyclones in the Australian region. Mon. Wea. Rev., 133, 36443660, https://doi.org/10.1175/MWR3041.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., and M. D. Eastin, 2012: Rapidly intensifying Hurricane Guillermo (1997). Part II: Resilience in shear. Mon. Wea. Rev., 140, 425444, https://doi.org/10.1175/MWR-D-11-00080.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., M. T. Montgomery, F. D. Marks Jr., and J. F. Gamache, 2000: Low-wavenumber structure and evolution of the hurricane inner core observed by airborne dual-Doppler radar. Mon. Wea. Rev., 128, 16531680, https://doi.org/10.1175/1520-0493(2000)128<1653:LWSAEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., M. T. Montgomery, and L. D. Grasso, 2004: A new look at the problem of tropical cyclones in vertical shear flow: Vortex resiliency. J. Atmos. Sci., 61, 322, https://doi.org/10.1175/1520-0469(2004)061<0003:ANLATP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., R. Rogers, and S. Lorsolo, 2013: Environmental flow impacts on tropical cyclone structure diagnosed from airborne Doppler radar composites. Mon. Wea. Rev., 141, 29492969, https://doi.org/10.1175/MWR-D-12-00334.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riemer, M., M. T. Montgomery, and M. E. Nicholls, 2010: A new paradigm for intensity modification of tropical cyclones: Thermodynamic impact of vertical wind shear on the inflow layer. Atmos. Chem. Phys., 10, 31633188, https://doi.org/10.5194/acp-10-3163-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rios-Berrios, R., and R. D. Torn, 2017: Climatological analysis of tropical cyclone intensity changes under moderate vertical wind shear. Mon. Wea. Rev., 145, 17171738, https://doi.org/10.1175/MWR-D-16-0350.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rios-Berrios, R., R. D. Torn, and C. A. Davis, 2016: An ensemble approach to investigate tropical cyclone intensification in sheared environments. Part I: Katia (2011). J. Atmos. Sci., 73, 7193, https://doi.org/10.1175/JAS-D-15-0052.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rios-Berrios, R., C. A. Davis, and R. D. Torn, 2018: A hypothesis for the intensification of tropical cyclones under moderate vertical wind shear. J. Atmos. Sci., 75, 41494173, https://doi.org/10.1175/JAS-D-18-0070.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, R., S. S. Chen, J. Tenerelli, and H. Willoughby, 2003: A numerical study of the impact of vertical shear on the distribution of rainfall in Hurricane Bonnie (1998). Mon. Wea. Rev., 131, 15771599, https://doi.org/10.1175//2546.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, R., S. Lorsolo, P. Reasor, J. Gamache, and F. Marks, 2012: Multiscale analysis of tropical cyclone kinematic structure from airborne Doppler radar composites. Mon. Wea. Rev., 140, 7799, https://doi.org/10.1175/MWR-D-10-05075.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, R., J. A. Zhang, J. Zawislak, H. Jiang, G. R. Alvey III, E. J. Zipser, and S. N. Stevenson, 2016: Observations of the structure and evolution of Hurricane Edouard (2014) during intensity change. Part II: Kinematic structure and the distribution of deep convection. Mon. Wea. Rev., 144, 33553376, https://doi.org/10.1175/MWR-D-16-0017.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryglicki, D. R., J. H. Cossuth, D. Hodyss, and J. D. Doyle, 2018: The unexpected rapid intensification of tropical cyclones in moderate vertical wind shear. Part I: Overview and observations. Mon. Wea. Rev., 146, 37733800, https://doi.org/10.1175/MWR-D-18-0020.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryglicki, D. R., J. D. Doyle, D. Hodyss, J. H. Cossuth, Y. Jin, K. C. Viner, and J. M. Schmidt, 2019: The unexpected rapid intensification of tropical cyclones in moderate vertical wind shear. Part III: Outflow–environment interaction. Mon. Wea. Rev., 147, 29192940, https://doi.org/10.1175/MWR-D-18-0370.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simpson, R. H., and H. Riehl, 1958: Mid-tropospheric ventilation as a constraint on hurricane development and maintenance. Proc. Tech. Conf. on Hurricanes, Amer. Meteor. Soc., Miami, FL, D4.1–D4.10.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-4751STR, 113 pp.

  • Stauffer, D. R., and N. L. Seaman, 1990: Use of four-dimensional data assimilation in a limited-area mesoscale model. Part I: Experiments with synoptic-scale data. Mon. Wea. Rev., 118, 12501277, https://doi.org/10.1175/1520-0493(1990)118<1250:UOFDDA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stewart, S. R., 2014: National Hurricane Center Tropical Cyclone Report: Hurricane Edouard (28 September–9 October 2016). National Hurricane Center Rep. AL142016, 19 pp., https://www.nhc.noaa.gov/data/tcr/AL062014_Edouard.pdf.

  • Stewart, S. R., 2017: National Hurricane Center Tropical Cyclone Report: Hurricane Matthew (11-19 September 2016). National Hurricane Center Rep. AL062014, 96 pp., https://www.nhc.noaa.gov/data/tcr/AL142016_Matthew.pdf.

  • Tang, B., and K. A. Emanuel, 2010: Midlevel ventilation’s constraint on tropical cyclone intensity. J. Atmos. Sci., 67, 18171830, https://doi.org/10.1175/2010JAS3318.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Velden, C. S., C. M. Hayden, S. J. Nieman, W. P. Menzel, S. Wanzong, and J. S. Goerss, 1997: Upper-tropospheric winds derived from geostationary satellite water vapor observations. Bull. Amer. Meteor. Soc., 78, 173196, https://doi.org/10.1175/1520-0477(1997)078<0173:UTWDFG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zawislak, J., H. Jiang, G. R. Alvey, E. J. Zipser, R. F. Rogers, J. A. Zhang, and S. N. Stevenson, 2016: Observations of the structure and evolution of Hurricane Edouard (2014) during intensity change. Part I: Relationship between the thermodynamic structure and precipitation. Mon. Wea. Rev., 144, 33333354, https://doi.org/10.1175/MWR-D-16-0018.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, D.-L., and C. Q. Kieu, 2005: Shear-forced vertical circulations in tropical cyclones. Geophys. Res. Lett., 32, L13822, https://doi.org/10.1029/2005GL023146.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, F., and D. Tao, 2013: Effects of vertical wind shear on the predictability of tropical cyclones. J. Atmos. Sci., 70, 975983, https://doi.org/10.1175/JAS-D-12-0133.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 396 0 0
Full Text Views 1553 674 57
PDF Downloads 671 234 27