• Borges, M. D., and D. L. Hartmann, 1992: Barotropic instability and optimal perturbations of observed nonzonal flows. J. Atmos. Sci., 49, 335354, https://doi.org/10.1175/1520-0469(1992)049<0335:BIAOPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buizza, R., 1994: Sensitivity of optimal unstable structures. Quart. J. Roy. Meteor. Soc., 120, 429451, https://doi.org/10.1002/qj.49712051609.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buizza, R., and T. N. Palmer, 1995: The singular-vector structure of the atmospheric global circulation. J. Atmos. Sci., 52, 14341456, https://doi.org/10.1175/1520-0469(1995)052<1434:TSVSOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Demaria, M., S. D. Aberson, K. V. Ooyama, and S. J. Lord, 1992: A nested spectral model for hurricane track forecasting. Mon. Wea. Rev., 120, 16281643, https://doi.org/10.1175/1520-0493(1992)120<1628:ANSMFH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Errico, R. M., 1997: What is an adjoint model? Bull. Amer. Meteor. Soc., 78, 25772592, https://doi.org/10.1175/1520-0477(1997)078<2577:WIAAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Errico, R. M., and T. Vukicevic, 1992: Sensitivity analysis using an adjoint of the PSU-NCAR mesoscale model. Mon. Wea. Rev., 120, 16441660, https://doi.org/10.1175/1520-0493(1992)120<1644:SAUAAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Farrell, B. F., 1989: Optimal excitation of baroclinic waves. J. Atmos. Sci., 46, 11931206, https://doi.org/10.1175/1520-0469(1989)046<1193:OEOBW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Farrell, B. F., and A. M. Moore, 1992: An adjoint method for obtaining the most rapidly growing perturbation to oceanic flows. J. Phys. Oceanogr., 22, 338349, https://doi.org/10.1175/1520-0485(1992)022<0338:AAMFOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hagos, S., R. Leung, S. A. Rauscher, and T. Ringler, 2013: Error characteristics of two grid refinement approaches in aquaplanet simulations: MPAS-A and WRF. Mon. Wea. Rev., 141, 30223036, https://doi.org/10.1175/MWR-D-12-00338.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 1973: An introduction to dynamic meteorology. Amer. J. Phys., 41, 752754, https://doi.org/10.1119/1.1987371.

  • Juckes, M., 1989: A shallow water model of the winter stratosphere. J. Atmos. Sci., 46, 29342956, https://doi.org/10.1175/1520-0469(1989)046<2934:ASWMOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kent, T., O. Bokhove, and S. Tobias, 2017: Dynamics of an idealized fluid model for investigating convective-scale data assimilation. Tellus, 69A, 1369332, https://doi.org/10.1080/16000870.2017.1369332.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, H. M., and B.-J. Jung, 2009: Singular vector structure and evolution of a recurving tropical cyclone. Mon. Wea. Rev., 137, 505524, https://doi.org/10.1175/2008MWR2643.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lacarra, J.-F., and O. Talagrand, 1988: Short-range evolution of small perturbations in a barotropic model. Tellus, 40A, 8195, https://doi.org/10.3402/tellusa.v40i2.11784.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindskog, M., N. Gustafsson, and K. S. Mogensen, 2006: Representation of background error standard deviations in a limited area model data assimilation system. Tellus, 58A, 430444, https://doi.org/10.1111/j.1600-0870.2006.00190.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1965: A study of the predictability of a 28-variable atmospheric model. Tellus, 17, 321333, https://doi.org/10.3402/tellusa.v17i3.9076.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1975: Climatic predictability. The Physical Basis of Climate and Climate Modelling, 132–136.

  • Michaelis, A. C., G. M. Lackmann, and W. A. Robinson, 2019: Evaluation of a unique approach to high-resolution climate modeling using the Model for Prediction Across Scales–Atmosphere (MPAS-A) version 5.1. Geosci. Model Dev., 12, 37253743, https://doi.org/10.5194/gmd-12-3725-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molteni, F., R. Buizza, T. N. Palmer, and T. Petroliagis, 1996: The ECMWF Ensemble Prediction System: Methodology and validation. Quart. J. Roy. Meteor. Soc., 122, 73119, https://doi.org/10.1002/qj.49712252905.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mureau, R., F. Molteni, and T. N. Palmer, 1993: Ensemble prediction using dynamically conditioned perturbations. Quart. J. Roy. Meteor. Soc., 119, 299323, https://doi.org/10.1002/qj.49711951005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., R. Buizza, F. Molteni, Y. Q. Chen, and S. Corti, 1944: Singular vectors and the predictability of weather and climate. Philos. Trans. Roy., 348A, 459475, https://doi.org/10.1098/rsta.1994.0105.

    • Search Google Scholar
    • Export Citation
  • Park, S.-H., W. C. Skamarock, J. B. Klemp, L. D. Fowler, and M. G. Duda, 2013: Evaluation of global atmospheric solvers using extensions of the Jablonowski and Williamson baroclinic wave test case. Mon. Wea. Rev., 141, 31163129, https://doi.org/10.1175/MWR-D-12-00096.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rauscher, S. A., and T. D. Ringler, 2014: Impact of variable-resolution meshes on midlatitude baroclinic eddies using CAM-MPAS-A. Mon. Wea. Rev., 142, 42564268, https://doi.org/10.1175/MWR-D-13-00366.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ringler, T., L. Ju, and M. Gunzburger, 2008: A multiresolution method for climate system modeling: Application of spherical centroidal Voronoi tessellations. Ocean Dyn., 58, 475498, https://doi.org/10.1007/s10236-008-0157-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ringler, T., J. Thuburn, J. B. Klemp, and W. C. Skamarock, 2010: A unified approach to energy conservation and potential vorticity dynamics for arbitrarily-structured C-grids. J. Comput. Phys., 229, 30653090, https://doi.org/10.1016/j.jcp.2009.12.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Satoh, M., T. Matsuno, H. Tomita, H. Miura, T. Nasuno, and S.-i. Iga, 2008: Nonhydrostatic icosahedral atmospheric model (NICAM) for global cloud resolving simulations. J. Comput. Phys., 227, 34863514, https://doi.org/10.1016/j.jcp.2007.02.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., J. B. Klemp, M. G. Duda, L. D. Fowler, S.-H. Park, and T. D. Ringler, 2012: A multiscale nonhydrostatic atmospheric model using centroidal Voronoi tessellations and C-grid staggering. Mon. Wea. Rev., 140, 30903105, https://doi.org/10.1175/MWR-D-11-00215.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Strang, G., and L. B. Freund, 1986: Introduction to Applied Mathematics. Wellesley Cambridge Press, 758 pp.

  • Thuburn, J., T. D. Ringler, W. C. Skamarock, and J. B. Klemp, 2009: Numerical representation of geostrophic modes on arbitrarily structured C-grids. J. Comput. Phys., 228, 83218335, https://doi.org/10.1016/j.jcp.2009.08.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tian, X., 2021: Evolutions of errors in the global multiresolution Model for Prediction Across Scales: Shallow Water (MPAS-SW). Quart. J. Roy. Meteor. Soc., 147, 382391, https://doi.org/10.1002/qj.3923.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tian, X., and X. Zou, 2016: ATMS- and AMSU-A-derived hurricane warm core structures using a modified retrieval algorithm. J. Geophys. Res. Atmos., 121, 12 63012 646, https://doi.org/10.1002/2016JD025042.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tian, X., and X. Zou, 2020: Development of the tangent linear and adjoint models of the MPAS-Atmosphere dynamic core and applications in adjoint relative sensitivity studies. Tellus, 72A, 117, https://doi.org/10.1080/16000870.2020.1814602.

    • Search Google Scholar
    • Export Citation
  • Yeh, K.-S., J. Côté, S. Gravel, A. Méthot, A. Patoine, M. Roch, and A. Staniforth, 2002: The CMC–MRB Global Environmental Multiscale (GEM) model. Part III: Nonhydrostatic formulation. Mon. Wea. Rev., 130, 339356, https://doi.org/10.1175/1520-0493(2002)130<0339:TCMGEM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zou, X., F. Vandenberghe, M. Pondeca, and Y.-H. Kuo, 1997: Introduction to adjoint techniques and the MM5 adjoint modeling system. NCAR Tech. Note NCAR/TN-435+STR, 121 pp., https://doi.org/10.5065/D6F18WNM.

    • Crossref
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 61 61 21
Full Text Views 14 14 5
PDF Downloads 15 15 8

Hurricane Predictability Analysis with Singular Vectors in the Multiresolution Global Shallow Water Model

View More View Less
  • 1 Department of Atmospheric and Oceanic Science, University of Maryland, College Park, College Park, Maryland
© Get Permissions
Restricted access

Abstract

In this study, the tangent linear and adjoint (TL/AD) models for the Model for Prediction Across Scales (MPAS) Shallow Water (SW) component are tested and demonstrated. Necessary verification check procedures of TL/AD are included to ensure that the models generate correct results. The TL/AD models are applied to calculate the singular vectors (SVs) with a 48-h optimization time interval (OTI) under both the quasi-uniform-resolution (UR) and smoothly variable-resolution (VR) meshes in the cases of Hurricanes Sandy (2012) and Joaquin (2015). For the global domain, the VR mesh with 30 210 grid cells uses slightly fewer computational resources than the UR mesh with 40 962 cells. It is found that at the points before Hurricanes Sandy and Joaquin made sharp turns, the leading SV from the VR experiment show sensitivities in both areas surrounding the hurricane and those relatively far away, indicating the significant impacts from the environmental flows. The leading SVs from the UR experiments are sensitive to only areas near the storm. Forecasts by the nonlinear SW model demonstrate that in the VR experiment, Hurricane Sandy has a northwest turn similar to the case in the real world while the storm gradually disappeared in the UR experiment. In the case of Hurricane Joaquin, the nonlinear forecast with the VR mesh can generate a track similar to the best track, while the storm became falsely dissipated in the forecast with the UR mesh. These experiments demonstrate, in the context of SW dynamics with a single layer and no physics, the track forecasts in the cases of Hurricanes Sandy and Joaquin with the VR mesh are more realistic than the UR mesh. The SV analyses shed light on the key features that can have significant impacts on the forecast performances.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xiaoxu Tian, xtian15@terpmail.umd.edu

Abstract

In this study, the tangent linear and adjoint (TL/AD) models for the Model for Prediction Across Scales (MPAS) Shallow Water (SW) component are tested and demonstrated. Necessary verification check procedures of TL/AD are included to ensure that the models generate correct results. The TL/AD models are applied to calculate the singular vectors (SVs) with a 48-h optimization time interval (OTI) under both the quasi-uniform-resolution (UR) and smoothly variable-resolution (VR) meshes in the cases of Hurricanes Sandy (2012) and Joaquin (2015). For the global domain, the VR mesh with 30 210 grid cells uses slightly fewer computational resources than the UR mesh with 40 962 cells. It is found that at the points before Hurricanes Sandy and Joaquin made sharp turns, the leading SV from the VR experiment show sensitivities in both areas surrounding the hurricane and those relatively far away, indicating the significant impacts from the environmental flows. The leading SVs from the UR experiments are sensitive to only areas near the storm. Forecasts by the nonlinear SW model demonstrate that in the VR experiment, Hurricane Sandy has a northwest turn similar to the case in the real world while the storm gradually disappeared in the UR experiment. In the case of Hurricane Joaquin, the nonlinear forecast with the VR mesh can generate a track similar to the best track, while the storm became falsely dissipated in the forecast with the UR mesh. These experiments demonstrate, in the context of SW dynamics with a single layer and no physics, the track forecasts in the cases of Hurricanes Sandy and Joaquin with the VR mesh are more realistic than the UR mesh. The SV analyses shed light on the key features that can have significant impacts on the forecast performances.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xiaoxu Tian, xtian15@terpmail.umd.edu
Save