• Andrews, D. G., J. R. Holton, and C. B. Leovy, 1987: Middle Atmosphere Dynamics. Academic Press, 489 pp.

  • Brier, G. W., and J. Simpson, 1969: Tropical cloudiness and rainfall related to pressure and tidal variations. Quart. J. Roy. Meteor. Soc., 95, 120147, https://doi.org/10.1002/qj.49709540309.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chapman, S., and R. S. Lindzen, 1970: Atmospheric Tides: Thermal and Gravitational. Gordon and Breach, 200 pp.

  • Cheong, H.-B., and R. Kimura, 1997: Excitation of the 5-day wave by Antarctica. J. Atmos. Sci., 54, 87102, https://doi.org/10.1175/1520-0469(1997)054<0087:EOTDWB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ECMWF, 2016: Part IV: Physical processes. IFS Documentation Cy41r2, 213 pp., https://www.ecmwf.int/node/16648.

  • Garcia, R. R., and J. E. Geisler, 1981: Stochastic forcing of small-amplitude oscillations in the stratosphere. J. Atmos. Sci., 38, 21872197, https://doi.org/10.1175/1520-0469(1981)038<2187:SFOSAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gu, S.-Y., T. Li, X. Dou, Q. Wu, M. G. Mlynczak, and J. M. Russell, 2013: Observations of quasi-two-day wave by TIMED/SABER and TIMED/TIDI. J. Geophys. Res. Atmos., 118, 16241639, https://doi.org/10.1002/jgrd.50191.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hagos, S., and Coauthors, 2010: Estimates of tropical diabatic heating profiles: Commonalities and uncertainties. J. Climate, 23, 542558, https://doi.org/10.1175/2009JCLI3025.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haltiner, G. J., 1971: Numerical Weather Prediction. John Wiley and Sons, Inc., 317 pp.

  • Hamilton, K., 1981: A note on the observed diurnal and semidiurnal rainfall variations. J. Geophys. Res., 86, 12 12212 126, https://doi.org/10.1029/JC086iC12p12122.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamilton, K., 1984: Evidence for a normal mode Kelvin wave in the atmosphere. J. Meteor. Soc. Japan, 62, 308311, https://doi.org/10.2151/jmsj1965.62.2_308.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamilton, K., 1987: General circulation model simulation of the structure and energetics of atmospheric normal modes. Tellus, 39A, 435459, https://doi.org/10.3402/tellusa.v39i5.11772.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., and M. C. Wheeler, 2008: Some space–time spectral analyses of tropical convection and planetary-scale waves. J. Atmos. Sci., 65, 29362948, https://doi.org/10.1175/2008JAS2675.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

  • Hirooka, T., and I. Hirota, 1985: Normal mode Rossby waves observed in the upper stratosphere. Part II: Second antisymmetric and symmetric modes of zonal wavenumbers 1 and 2. J. Atmos. Sci., 42, 536548, https://doi.org/10.1175/1520-0469(1985)042<0536:NMRWOI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hirota, I., and T. Hirooka, 1984: Normal mode Rossby waves observed in the upper stratosphere. Part I: First symmetric modes of zonal wavenumbers 1 and 2. J. Atmos. Sci., 41, 12531267, https://doi.org/10.1175/1520-0469(1984)041<1253:NMRWOI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horinouchi, T., and S. Yoden, 1996: Excitation of transient waves by localized episodic heating in the tropics and their propagation into the middle atmosphere. J. Meteor. Soc. Japan, 74, 189210, https://doi.org/10.2151/jmsj1965.74.2_189.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsu, H.-H., and B. J. Hoskins, 1989: Tidal fluctuations as seen in ECMWF data. Quart. J. Roy. Meteor. Soc., 115, 247264, https://doi.org/10.1002/qj.49711548603.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, https://doi.org/10.1175/JHM560.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., M. C. Wheeler, P. T. Haertel, K. H. Staub, and P. E. Roundy, 2009: Convectively coupled equatorial waves. Rev. Geophys., 47, RG2003, https://doi.org/10.1029/2008RG000266.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • King, M., M. C. Wheeler, and T. P. Lane, 2015: Association of convection with the 5-day Rossby–Haurwitz wave. J. Atmos. Sci., 72, 33093321, https://doi.org/10.1175/JAS-D-14-0316.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • King, M., M. C. Wheeler, and T. P. Lane, 2016: 5-day-wave interactions with tropical precipitation in CMIP5 models. J. Climate, 29, 86118624, https://doi.org/10.1175/JCLI-D-16-0190.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • King, M., M. C. Wheeler, and T. P. Lane, 2017: Mechanisms linking global 5-day waves to tropical convection. J. Atmos. Sci., 74, 36793702, https://doi.org/10.1175/JAS-D-17-0101.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kohyama, T., and J. M. Wallace, 2016: Rainfall variations induced by the lunar gravitational atmospheric tide and their implications for the relationship between tropical rainfall and humidity. Geophys. Res. Lett., 43, 918923, https://doi.org/10.1002/2015GL067342.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kubota, T., and Coauthors, 2020: Global Satellite Mapping of Precipitation (GSMaP) products in the GPM era. Satellite Precipitation Measurement, Springer, 355373, https://doi.org/10.1007/978-3-030-24568-9_20.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., 1974: Wave-CISK in the tropics. J. Atmos. Sci., 31, 156179, https://doi.org/10.1175/1520-0469(1974)031<0156:WCITT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., 2003: The interaction of waves and convection in the tropics. J. Atmos. Sci., 60, 30093020, https://doi.org/10.1175/1520-0469(2003)060<3009:TIOWAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., and D. Blake, 1972: Lamb waves in the presence of realistic distributions of temperature and dissipation. J. Geophys. Res., 77, 21662176, https://doi.org/10.1029/JC077i012p02166.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Longuet-Higgins, M. S., 1968: The eigenfunctions of Laplace’s tidal equations over a sphere. Philos. Trans. Roy. Soc. London, 262A, 511607, https://doi.org/10.1098/rsta.1968.0003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madden, R. A., 2007: Large-scale, free Rossby waves in the atmosphere—An update. Tellus, 59A, 571590, https://doi.org/10.1111/j.1600-0870.2007.00257.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madden, R. A., 2019: How I learned to love normal-mode Rossby–Haurwitz waves. Bull. Amer. Meteor. Soc., 100, 503511, https://doi.org/10.1175/BAMS-D-17-0293.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. Julian, 1972: Further evidence of global-scale, 5-day pressure waves. J. Atmos. Sci., 29, 14641469, https://doi.org/10.1175/1520-0469(1972)029<1464:FEOGSD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manzini, E., and K. Hamilton, 1993: Middle atmosphere traveling waves forced by latent and convective heating. J. Atmos. Sci., 50, 21802200, https://doi.org/10.1175/1520-0469(1993)050<2180:MATWFB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan, 44, 2543, https://doi.org/10.2151/jmsj1965.44.1_25.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1980: A trial of search for minor components of lunar tides and short period free oscillations of the atmosphere in surface pressure data. J. Meteor. Soc. Japan, 58, 281285, https://doi.org/10.2151/jmsj1965.58.4_281.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miyoshi, Y., and T. Hirooka, 1999: A numerical experiment of excitation of the 5-day wave by a GCM. J. Atmos. Sci., 56, 16981707, https://doi.org/10.1175/1520-0469(1999)056<1698:ANEOEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodgers, C. D., and A. J. Prata, 1981: Evidence for a travelling two-day wave in the middle atmosphere. J. Geophys. Res., 86, 96619664, https://doi.org/10.1029/JC086iC10p09661.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sakazaki, T., and K. Hamilton, 2017: Physical processes controlling the tide in the tropical lower atmosphere investigated using a comprehensive numerical model. J. Atmos. Sci., 74, 24672487, https://doi.org/10.1175/JAS-D-17-0080.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sakazaki, T., and K. Hamilton, 2020: An array of ringing global free modes discovered in tropical surface pressure data. J. Atmos. Sci., 77, 25192539, https://doi.org/10.1175/JAS-D-20-0053.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sakazaki, T., K. Hamilton, C. Zhang, and Y. Wang, 2017: Is there a stratospheric pacemaker controlling the daily cycle of tropical rainfall? Geophys. Res. Lett., 44, 19982006, https://doi.org/10.1002/2017GL072549.

    • Search Google Scholar
    • Export Citation
  • Salby, M. L., 1979: On the solution of the homogeneous vertical structure problem for long-period oscillations. J. Atmos. Sci., 36, 23502359, https://doi.org/10.1175/1520-0469(1979)036<2350:OTSOTH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salby, M. L., 1984: Survey of planetary-scale traveling waves: The state of theory and observations. Rev. Geophys. Space Phys., 22, 209236, https://doi.org/10.1029/RG022i002p00209.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salby, M. L., and R. R. Garcia, 1987: Transient response to localized episodic heating in the tropics. Part I: Excitation and short-time near-field behavior. J. Atmos. Sci., 44, 458498, https://doi.org/10.1175/1520-0469(1987)044<0458:TRTLEH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salby, M. L., L. Matrosova, and P. F. Callaghan, 2007: Global Kelvin waves in the upper atmosphere excited by tropospheric forcing at midlatitudes. J. Geophys. Res., 112, D06111, https://doi.org/10.1029/2006JD007235.

    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., and C. S. Bretherton, 2003: Large-scale waves interacting with deep convection in idealized mesoscale model simulations. Tellus, 55A, 4560, https://doi.org/10.3402/tellusa.v55i1.12084.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takayabu, Y. N., 1994: Large-scale cloud disturbances associated with equatorial waves. Part I: Spectral features of the cloud disturbances. J. Meteor. Soc. Japan, 72, 433449, https://doi.org/10.2151/jmsj1965.72.3_433.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • TRMM, 2011: TRMM (TMPA) rainfall estimate L3 3 hour 0.25 degree × 0.25 degree v7. GES DISC, accessed 31 May 2019, https://doi.org/10.5067/TRMM/TMPA/3H/7.

    • Crossref
    • Export Citation
  • von Savigny, C., C. Robert, H. Bovensmann, J. P. Burrows, and M. Schwartz, 2007: Satellite observations of the quasi 5-day wave in noctilucent clouds and mesopause temperatures. Geophys. Res. Lett., 34, L24808, https://doi.org/10.1029/2007GL030987.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheeler, M. C., and G. N. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber–frequency domain. J. Atmos. Sci., 56, 374399, https://doi.org/10.1175/1520-0469(1999)056<0374:CCEWAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woolnough, S. J., J. M. Slingo, and B. J. Hoskins, 2004: The diurnal cycle of convection and atmospheric tides in an aquaplanet GCM. J. Atmos. Sci., 61, 25592573, https://doi.org/10.1175/JAS3290.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yanai, M., S. Esbensen, and J.-H. Chu, 1973: Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J. Atmos. Sci., 30, 611627, https://doi.org/10.1175/1520-0469(1973)030<0611:DOBPOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yasunaga, K., T. Nasuno, H. Miura, Y. N. Takayabu, and M. Yoshizaki, 2013: Afternoon precipitation peak simulated in an aqua-planet global non-hydrostatic model (aqua-planet-NICAM). J. Meteor. Soc. Japan, 91A, 217229, https://doi.org/10.2151/jmsj.2013-A07.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yasunaga, K., S. Yokoi, K. Inoue, and B. E. Mapes, 2019: Space–time spectral analysis of the moist static energy budget equation. J. Climate, 32, 501529, https://doi.org/10.1175/JCLI-D-18-0334.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 28 28 28
Full Text Views 12 12 12
PDF Downloads 14 14 14

Tropical Rainfall Variability Accompanying Global Normal Mode Oscillations

View More View Less
  • 1 Graduate School of Science, Kyoto University, Kyoto, Japan
© Get Permissions
Restricted access

Abstract

Using global precipitation datasets (GSMaP, TRMM) and the latest reanalysis data (ERA5), we performed a comprehensive analysis of the tropical rainfall variability that accompanies global-scale, low-frequency normal modes: Rossby, Rossby–gravity, and Kelvin modes. Cross-spectral analysis and lag-regression analysis both showed that coherent rainfall variations accompany not only the wavenumber-1 gravest Rossby mode (“5-day” wave) but other low-frequency modes. The normal mode rainfall variations are enhanced in regions such as the Amazon basin, but also include circumglobally traveling structures with substantial amplitude over the open ocean. These results are remarkably consistent among the three datasets including even ERA5 rainfall data. The circumglobal rainfall signals may be considered primarily as a response to the normal mode dynamical variations. We found that the phase relationship between rainfall and dynamical field variability is strongly dependent on the type of mode and even on the zonal wavenumber. We suggest that this is explained by the difference in relative importance of two underlying processes: 1) moisture-flux convergence and 2) rainfall enhancement associated with adiabatic cooling. Our determined rainfall signals are the response to quasi-monochromatic, periodic waves that have a simple vertical structure and represent one special case of tropospheric wave–rainfall coupling. Implications for the mechanism of 12-h rainfall oscillations believed to be forced by the atmospheric tide are also considered.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Takatoshi Sakazaki, zaki@kugi.kyoto-u.ac.jp

Abstract

Using global precipitation datasets (GSMaP, TRMM) and the latest reanalysis data (ERA5), we performed a comprehensive analysis of the tropical rainfall variability that accompanies global-scale, low-frequency normal modes: Rossby, Rossby–gravity, and Kelvin modes. Cross-spectral analysis and lag-regression analysis both showed that coherent rainfall variations accompany not only the wavenumber-1 gravest Rossby mode (“5-day” wave) but other low-frequency modes. The normal mode rainfall variations are enhanced in regions such as the Amazon basin, but also include circumglobally traveling structures with substantial amplitude over the open ocean. These results are remarkably consistent among the three datasets including even ERA5 rainfall data. The circumglobal rainfall signals may be considered primarily as a response to the normal mode dynamical variations. We found that the phase relationship between rainfall and dynamical field variability is strongly dependent on the type of mode and even on the zonal wavenumber. We suggest that this is explained by the difference in relative importance of two underlying processes: 1) moisture-flux convergence and 2) rainfall enhancement associated with adiabatic cooling. Our determined rainfall signals are the response to quasi-monochromatic, periodic waves that have a simple vertical structure and represent one special case of tropospheric wave–rainfall coupling. Implications for the mechanism of 12-h rainfall oscillations believed to be forced by the atmospheric tide are also considered.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Takatoshi Sakazaki, zaki@kugi.kyoto-u.ac.jp
Save