• Andrews, D. G., J. D. Mahlman, and R. W. Sinclair, 1983: Eliassen-Palm diagnostics of wave–mean flow interaction in the GFDL “SKYHI” general circulation model. J. Atmos. Sci., 40, 27682784, https://doi.org/10.1175/1520-0469(1983)040<2768:ETWATM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bird, M. K., and Coauthors, 2005: The vertical profile of winds on Titan. Nature, 438, 800802, https://doi.org/10.1038/nature04060.

  • Boer, G. J., 1982: Diagnostic equations in isobaric coordinates. Mon. Wea. Rev., 110, 18011820, https://doi.org/10.1175/1520-0493(1982)110<1801:DEIIC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colyer, G. J., and G. K. Vallis, 2019: Zonal-mean atmospheric dynamics of slowly rotating terrestrial planets. J. Atmos. Sci., 76, 13971418, https://doi.org/10.1175/JAS-D-18-0180.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Counselman, C. C., S. A. Gourevitch, R. W. King, G. B. Loriot, and E. S. Ginsberg, 1980: Zonal and meridional circulation of the lower atmosphere of Venus determined by radio interferometry. J. Geophys. Res., 85, 80268030, https://doi.org/10.1029/JA085iA13p08026.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dias Pinto, J. R., and J. L. Mitchell, 2014: Atmospheric superrotation in an idealized GCM: Parameter dependence of the eddy response. Icarus, 238, 93109, https://doi.org/10.1016/j.icarus.2014.04.036.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fang, M., and K. K. Tung, 1999: Time-dependent nonlinear Hadley circulation. J. Atmos. Sci., 56, 17971807, https://doi.org/10.1175/1520-0469(1999)056<1797:TDNHC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flasar, F. M., and R. K. Achterberg, 2009: The structure and dynamics of Titan’s middle atmosphere. Philos. Trans. Roy. Soc. London, 367A, 649664, https://doi.org/10.1098/rsta.2008.0242.

    • Search Google Scholar
    • Export Citation
  • Fulchignoni, M., and Coauthors, 2005: In situ measurements of the physical characteristics of Titan’s environment. Nature, 438, 785791, https://doi.org/10.1038/nature04314.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geisler, J. E., E. J. Pitcher, and R. C. Malone, 1983: Rotating-fluid experiments with an atmospheric general circulation model. J. Geophys. Res., 88, 97069716, https://doi.org/10.1029/JC088iC14p09706.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gierasch, P. J., 1975: Meridional circulation and the maintenance of the Venus atmospheric rotation. J. Atmos. Sci., 32, 10381044, https://doi.org/10.1175/1520-0469(1975)032<1038:MCATMO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., 2019: 100 years of progress in understanding the general circulation of the atmosphere. A Century of Progress in Atmospheric and Related Sciences: Celebrating the American Meteorological Society Centennial, Meteor. Monogr., No. 59, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0017.1.

    • Crossref
    • Export Citation
  • Held, I. M., and A. Y. Hou, 1980: Nonlinear axially symmetric circulations in a nearly inviscid atmosphere. J. Atmos. Sci., 37, 515533, https://doi.org/10.1175/1520-0469(1980)037<0515:NASCIA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., and M. J. Suarez, 1994: A proposal for the intercomparison of the dynamical cores of atmospheric general circulation models. Bull. Amer. Meteor. Soc., 75, 18251830, https://doi.org/10.1175/1520-0477(1994)075<1825:APFTIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hide, R., 1969: Dynamics of the atmospheres of the major planets with an appendix on the viscous boundary layer at the rigid bounding surface of an electrically-conducting rotating fluid in the presence of a magnetic field. J. Atmos. Sci., 26, 841853, https://doi.org/10.1175/1520-0469(1969)026<0841:DOTAOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hou, A. Y., 1984: Axisymmetric circulations forced by heat and momentum sources: A simple model applicable to the Venus atmosphere. J. Atmos. Sci., 41, 34373455, https://doi.org/10.1175/1520-0469(1984)041<3437:ACFBHA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hourdin, F., O. Talagrand, R. Sadourny, R. Courtin, D. Gautier, and C. P. Mckay, 1995: Numerical simulation of the general circulation of the atmosphere of Titan. Icarus, 117, 358374, https://doi.org/10.1006/icar.1995.1162.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaspi, Y., and A. P. Showman, 2015: Atmospheric dynamics of terrestrial exoplanets over a wide range of orbital and atmospheric parameters. Astrophys. J., 804, 60, https://doi.org/10.1088/0004-637X/804/1/60.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lebonnois, S., F. Hourdin, V. Eymet, A. Crespin, R. Fournier, and F. Forget, 2010: Superrotation of Venus’ atmosphere analyzed with a full general circulation model. J. Geophys. Res. Planets, 115, E06006, https://doi.org/10.1029/2009JE003458.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lebonnois, S., C. Covey, A. Grossman, H. Parish, G. Schubert, R. Walterscheid, P. Lauritzen, and C. Jablonowski, 2012: Angular momentum budget in general circulation models of superrotating atmospheres: A critical diagnostic. J. Geophys. Res. Planets, 117, E12004, https://doi.org/10.1029/2012JE004223.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lebonnois, S., and Coauthors, 2013: Models of Venus atmosphere. Towards Understanding the Climate of Venus, L. Bengtsson et al., Eds., Springer, 129–156, https://doi.org/10.1007/978-1-4614-5064-1_8.

    • Crossref
    • Export Citation
  • Lee, S., 2005: Baroclinic multiple zonal jets on the sphere. J. Atmos. Sci., 62, 24842498, https://doi.org/10.1175/JAS3481.1.

  • Lu, L. L., and M. Yamamoto, 2020: Planetary-size dependence of zonal jets: Effects of horizontal diffusion in an idealized Earth-like general circulation model. Planet. Space Sci., 70, 104976, https://doi.org/10.1016/j.pss.2020.104976.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mendonça, J. M., and P. L. Read, 2016: Exploring the Venus global super-rotation using a comprehensive general circulation model. Planet. Space Sci., 134, 118, https://doi.org/10.1016/j.pss.2016.09.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitchell, J. L., and G. K. Vallis, 2010: The transition to superrotation in terrestrial atmospheres. J. Geophys. Res. Planets, 115, E12008, https://doi.org/10.1029/2010JE003587.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Porco, C. C., and Coauthors, 2003: Cassini imaging of Jupiter’s atmosphere, satellites, and rings. Science, 299, 15411547, https://doi.org/10.1126/science.1079462.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Porco, C. C., and Coauthors, 2005: Cassini imaging science: Initial results on Saturn’s atmosphere. Science, 307, 12431247, https://doi.org/10.1126/science.1107691.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Potter, S. F., G. K. Vallis, and J. L. Mitchell, 2014: Spontaneous superrotation and the role of Kelvin waves in an idealized dry GCM. J. Atmos. Sci., 71, 596614, https://doi.org/10.1175/JAS-D-13-0150.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Read, P. L., 1986a: Super-rotation and diffusion of axial angular momentum. I. “Speed limits” for axisymmetric flow in a rotating cylindrical fluid annulus. Quart. J. Roy. Meteor. Soc., 112, 231251, https://doi.org/10.1002/qj.49711247113.

    • Search Google Scholar
    • Export Citation
  • Read, P. L., 1986b: Super-rotation and diffusion of axial angular momentum. II. A review of quasi-axisymmetric models of planetary atmospheres. Quart. J. Roy. Meteor. Soc., 112, 253272, https://doi.org/10.1002/qj.49711247114.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Read, P. L., 2011: Dynamics and circulation regimes of terrestrial planets. Planet. Space Sci., 59, 900914, https://doi.org/10.1016/j.pss.2010.04.024.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Read, P. L., and S. Lebonnois, 2018: Superrotation on Venus, on Titan, and elsewhere. Annu. Rev. Earth Planet. Sci., 46, 175202, https://doi.org/10.1146/annurev-earth-082517-010137.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Read, P. L., S. R. Lewis, and G. K. Vallis, 2018: Atmospheric dynamics of terrestrial planets. Handbook of Exoplanets, H. Deeg and J. Belmonte, Eds., Springer, 1–31.

    • Crossref
    • Export Citation
  • Sánchez-Lavega, A., S. Lebonnois, T. Imamura, P. Read, and D. Luz, 2017: The atmospheric dynamics of Venus. Space Sci. Rev., 212, 15411616, https://doi.org/10.1007/s11214-017-0389-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, T., 2006: The general circulation of the atmosphere. Annu. Rev. Earth Planet. Sci., 34, 655688, https://doi.org/10.1146/annurev.earth.34.031405.125144.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, T., and C. C. Walker, 2008: Scaling laws and regime transitions of macroturbulence in dry atmospheres. J. Atmos. Sci., 65, 21532173, https://doi.org/10.1175/2007JAS2616.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Showman, A. P., R. D. Wordsworth, T. M. Merlis, and Y. Kaspi, 2013: Atmospheric circulation of terrestrial exoplanets. Comparative Climatology of Terrestrial Planets, S. J. Mackwell et al., Eds., University of Arizona, 277–326, https://doi.org/10.2458/azu_uapress_9780816530595-ch12.

    • Crossref
    • Export Citation
  • Thompson, R. O. R. Y., 1980: A prograde jet driven by Rossby waves. J. Atmos. Sci., 37, 12161226, https://doi.org/10.1175/1520-0469(1980)037<1216:APJDBR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., and Coauthors, 2018: Isca, v1.0: A framework for the global modelling of the atmospheres of Earth and other planets at varying levels of complexity. Geosci. Model Dev., 11, 843859, https://doi.org/10.5194/gmd-11-843-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, P., and J. L. Mitchell, 2014: Planetary ageostrophic instability leads to superrotation. Geophys. Res. Lett., 41, 41184126, https://doi.org/10.1002/2014GL060345.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., P. L. Read, F. Tabataba-Vakili, and R. M. B. Young, 2018: Comparative terrestrial atmospheric circulation regimes in simplified global circulation models. Part I: From cyclostrophic super-rotation to geostrophic turbulence. Quart. J. Roy. Meteor. Soc., 144, 25372557, https://doi.org/10.1002/qj.3350.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, G. P., 1978: Planetary circulations. I. Barotropic representation of Jovian and terrestrial turbulence. J. Atmos. Sci., 35, 13991426, https://doi.org/10.1175/1520-0469(1978)035<1399:PCBROJ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, G. P., 2003: Barotropic instability and equatorial superrotation. J. Atmos. Sci., 60, 21362152, https://doi.org/10.1175/1520-0469(2003)060<2136:BIAES>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, G. P., 2006: Equatorial superrotation and Barotropic instability: Static stability variants. J. Atmos. Sci., 63, 15481557, https://doi.org/10.1175/JAS3711.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yamamoto, H., and S. Yoden, 2013: Theoretical estimation of the superrotation strength in an idealized quasi-axisymmetric model of planetary atmospheres. J. Meteor. Soc. Japan, 91, 119141, https://doi.org/10.2151/jmsj.2013-203.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yamamoto, H., K. Ishioka, and S. Yoden, 2009: Axisymmetric steady solutions in an idealized model of atmospheric general circulations: Hadley circulation and super-rotation. Theor. Appl. Mech. Japan, 57, 147158, https://doi.org/10.11345/nctam.57.147.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 96 96 96
Full Text Views 32 32 32
PDF Downloads 41 41 41

Characterizing Regimes of Atmospheric Circulation in Terms of Their Global Superrotation

View More View Less
  • 1 Atmospheric, Oceanic and Planetary Physics, Department of Physics, University of Oxford, Oxford, United Kingdom
© Get Permissions
Restricted access

Abstract

The global superrotation index S compares the integrated axial angular momentum of the atmosphere to that of a state of solid-body corotation with the underlying planet. The index S is similar to a zonal Rossby number, which suggests it may be a useful indicator of the circulation regime occupied by a planetary atmosphere. We investigate the utility of S for characterizing regimes of atmospheric circulation by running idealized Earthlike general circulation model experiments over a wide range of rotation rates Ω, 8ΩE to ΩE/512, where ΩE is Earth’s rotation rate, in both an axisymmetric and three-dimensional configuration. We compute S for each simulated circulation, and study the dependence of S on Ω. For all rotation rates considered, S is on the same order of magnitude in the 3D and axisymmetric experiments. For high rotation rates, S ≪ 1 and S ∝ Ω−2, while at low rotation rates S ≈ 1/2 = constant. By considering the limiting behavior of theoretical models for S, we show how the value of S and its local dependence on Ω can be related to the circulation regime occupied by a planetary atmosphere. Indices of S ≪ 1 and S ∝ Ω−2 define a regime dominated by geostrophic thermal wind balance, and S ≈ 1/2 = constant defines a regime where the dynamics are characterized by conservation of angular momentum within a planetary-scale Hadley circulation. Indices of S ≫ 1 and S ∝ Ω−2 define an additional regime dominated by cyclostrophic balance and strong equatorial superrotation that is not realized in our simulations.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Publisher’s Note: This article was revised on 5 April 2021 to correct a typesetting error in Eq. (9) and in the text immediately following.

Corresponding author: Neil T. Lewis, neil.lewis@physics.ox.ac.uk

Abstract

The global superrotation index S compares the integrated axial angular momentum of the atmosphere to that of a state of solid-body corotation with the underlying planet. The index S is similar to a zonal Rossby number, which suggests it may be a useful indicator of the circulation regime occupied by a planetary atmosphere. We investigate the utility of S for characterizing regimes of atmospheric circulation by running idealized Earthlike general circulation model experiments over a wide range of rotation rates Ω, 8ΩE to ΩE/512, where ΩE is Earth’s rotation rate, in both an axisymmetric and three-dimensional configuration. We compute S for each simulated circulation, and study the dependence of S on Ω. For all rotation rates considered, S is on the same order of magnitude in the 3D and axisymmetric experiments. For high rotation rates, S ≪ 1 and S ∝ Ω−2, while at low rotation rates S ≈ 1/2 = constant. By considering the limiting behavior of theoretical models for S, we show how the value of S and its local dependence on Ω can be related to the circulation regime occupied by a planetary atmosphere. Indices of S ≪ 1 and S ∝ Ω−2 define a regime dominated by geostrophic thermal wind balance, and S ≈ 1/2 = constant defines a regime where the dynamics are characterized by conservation of angular momentum within a planetary-scale Hadley circulation. Indices of S ≫ 1 and S ∝ Ω−2 define an additional regime dominated by cyclostrophic balance and strong equatorial superrotation that is not realized in our simulations.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Publisher’s Note: This article was revised on 5 April 2021 to correct a typesetting error in Eq. (9) and in the text immediately following.

Corresponding author: Neil T. Lewis, neil.lewis@physics.ox.ac.uk
Save