• Adam, O., T. Bischoff, and T. Schneider, 2016: Seasonal and interannual variations of the energy flux equator and ITCZ. Part II: Zonally varying shifts of the ITCZ. J. Climate, 29, 72817293, https://doi.org/10.1175/JCLI-D-15-0710.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Biasutti, M., and et al. , 2018: Global energetics and local physics as drivers of past, present and future monsoons. Nat. Geosci., 11, 392400, https://doi.org/10.1038/s41561-018-0137-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bischoff, T., and T. Schneider, 2014: Energetic constraints of the position of the intertropical convergence zone. J. Climate, 27, 49374951, https://doi.org/10.1175/JCLI-D-13-00650.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boos, W. R., and Z. Kuang, 2010: Dominant control of the South Asian monsoon by orographic insulation versus plateau heating. Nature, 463, 218222, https://doi.org/10.1038/nature08707.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boos, W. R., and R. L. Korty, 2016: Regional energy budget control of the intertropical convergence zone and application to mid-Holocene rainfall. Nat. Geosci., 9, 892897, https://doi.org/10.1038/ngeo2833.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bordoni, S., and T. Schneider, 2008: Monsoons as eddy-mediated regime transitions of the tropical overturning circulation. Nat. Geosci., 1, 515519, https://doi.org/10.1038/ngeo248.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charney, J., 1969: A further note on large-scale motions in the tropics. J. Atmos. Sci., 26, 182185, https://doi.org/10.1175/1520-0469(1969)026<0182:AFNOLS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chou, C., and J. D. Neelin, 2004: Mechanisms of global warming impacts on regional tropical precipitation. J. Climate, 17, 26882701, https://doi.org/10.1175/1520-0442(2004)017<2688:MOGWIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chou, C., J. D. Neelin, and H. Su, 2001: Ocean-atmosphere-land feedbacks in an idealized monsoon. Quart. J. Roy. Meteor. Soc., 127, 18691891, https://doi.org/10.1002/qj.49712757602.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collins, M., and et al. , 2018: Challenges and opportunities for improved understanding of regional climate dynamics. Nat. Climate Change, 8, 101108, https://doi.org/10.1038/s41558-017-0059-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cook, K. H., and A. Gnanadesikan, 1991: Effects of saturated and dry land surfaces on the tropical circulation and precipitation in a general circulation model. J. Climate, 4, 873889, https://doi.org/10.1175/1520-0442(1991)004<0873:EOSADL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., 1998: Land-sea geometry and its effect on monsoon circulations. J. Geophys. Res., 103, 11 55511 572, https://doi.org/10.1029/98JD00802.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1987: An air–sea interaction model of intraseasonal oscillations in the tropics. J. Atmos. Sci., 44, 23242340, https://doi.org/10.1175/1520-0469(1987)044<2324:AASIMO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1995: On thermally direct circulations in moist atmospheres. J. Atmos. Sci., 52, 15291534, https://doi.org/10.1175/1520-0469(1995)052<1529:OTDCIM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., J. D. Neelin, and C. Bretherton, 1994: On large-scale circulations in convecting atmospheres. Quart. J. Roy. Meteor. Soc., 120, 11111143, https://doi.org/10.1002/qj.49712051902.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flohn, H., 1957: Large-scale aspects of the summer monsoon in South and East Asia. J. Meteor. Soc. Japan, 35A, 180186, https://doi.org/10.2151/jmsj1923.35A.0_180.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frierson, D. M. W., 2007: The dynamics of idealized convection schemes and their effect on the zonally averaged tropical circulation. J. Atmos. Sci., 64, 19591976, https://doi.org/10.1175/JAS3935.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frierson, D. M. W., I. M. Held, and P. Zurita-Gotor, 2006: A gray-radiation aquaplanet moist GCM. Part I: Static stability and eddy scales. J. Atmos. Sci., 63, 25482566, https://doi.org/10.1175/JAS3753.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geen, R., F. Lambert, and G. Vallis, 2018: Regime change behavior during Asian monsoon onset. J. Climate, 31, 33273348, https://doi.org/10.1175/JCLI-D-17-0118.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geen, R., F. Lambert, and G. Vallis, 2019: Processes and timescales in onset and withdrawal of “aquaplanet monsoons.” J. Climate, 76, 23572373, https://doi.org/10.1175/JAS-D-18-0214.1.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., 2000: The general circulation of the atmosphere. Proc. Program in Geophysical Fluid Dynamics, Woods Hole, MA, Woods Hole Oceanography Institution.

  • Held, I. M., and A. Y. Hou, 1980: Nonlinear axially symmetric circulations in a nearly inviscid atmosphere. J. Atmos. Sci., 37, 515533, https://doi.org/10.1175/1520-0469(1980)037<0515:NASCIA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hill, S. A., 2019: Theories for past and future monsoon rainfall changes. Curr. Climate Change Rep., 5, 160171, https://doi.org/10.1007/s40641-019-00137-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jeevanjee, N., P. Hassanzadeh, S. Hill, and A. Sheshadri, 2017: A perspective on climate model hierarchies. J. Adv. Model. Earth Syst., 9, 17601771, https://doi.org/10.1002/2017MS001038.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, S. M., D. M. W. Frierson, and M. Zhao, 2008: The response of the ITCZ to extratropical thermal forcing: Idealized slab-ocean experiments with a GCM. J. Climate, 21, 35213532, https://doi.org/10.1175/2007JCLI2146.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, S. M., D. M. W. Frierson, and I. M. Held, 2009: The tropical response to extratropical thermal forcing in an idealized GCM: The importance of radiative feedbacks and convective parameterization. J. Atmos. Sci., 66, 28122827, https://doi.org/10.1175/2009JAS2924.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, S. M., Y. Shin, and S.-P. Xie, 2018: Extratropical forcing and tropical rainfall distribution: Energetics framework and ocean Ekman advection. npj Climate Atmos. Sci., 1, 20172, https://doi.org/10.1038/s41612-017-0004-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laraia, A., 2015: Observations and modeling of tropical planetary atmospheres. Ph.D. thesis, Environmental Science and Engineering, California Institute of Technology, 76 pp.

  • Lindzen, S. R., and A. Y. Hou, 1988: Hadley circulations for zonally averaged heating centered off the equator. J. Atmos. Sci., 45, 24162427, https://doi.org/10.1175/1520-0469(1988)045<2416:HCFZAH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lobo, A. H., and S. Bordoni, 2020: Atmospheric dynamics of high obliquity planets. Icarus, 340, 115391, https://doi.org/10.1016/J.ICARUS.2019.113592.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lutsko, N. J., J. Marshall, and B. Green, 2019: Modulation of monsoon circulations by cross-equatorial ocean heat transport. J. Climate, 32, 34713485, https://doi.org/10.1175/JCLI-D-18-0623.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maroon, E. A., and D. M. W. Frierson, 2016: The impact of a continent’s longitudinal extent on tropical precipitation. Geophys. Res. Lett., 43, 11 92111 929, https://doi.org/10.1002/2016GL071518.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maroon, E. A., D. M. W. Frierson, S. M. Kang, and J. Scheff, 2016: The precipitation response to an idealized subtropical continent. J. Climate, 29, 45434564, https://doi.org/10.1175/JCLI-D-15-0616.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Merlis, T., T. Schneider, S. Bordoni, and I. Eisenman, 2013: Hadley circulation response to orbital precession. Part II: Subtropical continent. J. Climate, 26, 754771, https://doi.org/10.1175/JCLI-D-12-00149.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molnar, P., W. R. Boos, and D. S. Battisti, 2010: Orographic controls on climate and paleoclimate of Asia: Thermal and mechanical roles for the Tibetan Plateau. Annu. Rev. Earth Planet. Sci., 38, 77102, https://doi.org/10.1146/annurev-earth-040809-152456.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., 2007: Moist dynamics of tropical convection zones in monsoons, teleconnections and global warming. The Global Circulation of the Atmosphere, Princeton University Press, 267–301.

  • Neelin, J. D., and I. M. Held, 1987: Modeling tropical convergence based on the moist static energy budget. Mon. Wea. Rev., 115, 312, https://doi.org/10.1175/1520-0493(1987)115<0003:MTCBOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., I. M. Held, and K. H. Cook, 1987: Evaporation–wind feedback and low-frequency variability in the tropical atmosphere. J. Atmos. Sci., 44, 23412348, https://doi.org/10.1175/1520-0469(1987)044<2341:EWFALF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Gorman, P. A., and T. Schneider, 2008: The hydrological cycle over a wide range of climates simulated with an idealized GCM. J. Climate, 21, 38153832, https://doi.org/10.1175/2007JCLI2065.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pauluis, O., 2004: Boundary layer dynamics and cross-equatorial Hadley circulation. J. Atmos. Sci., 61, 11611173, https://doi.org/10.1175/1520-0469(2004)061<1161:BLDACH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pedlosky, J., 1964: The stability of currents in the atmosphere and the ocean: Part I. J. Atmos. Sci., 21, 201219, https://doi.org/10.1175/1520-0469(1964)021<0201:TSOCIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peyrillé, P., J.-P. Lafore, and A. Boone, 2016: The annual cycle of the West African monsoon in a two-dimensional model: Mechanisms of the rain-band migration. Quart. J. Roy. Meteor. Soc., 142, 14731489, https://doi.org/10.1002/qj.2750.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Plumb, R. A., and A. Y. Hou, 1992: The response of a zonally symmetric atmosphere to subtropical thermal forcing: Threshold behavior. J. Atmos. Sci., 49, 17901799, https://doi.org/10.1175/1520-0469(1992)049<1790:TROAZS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Popp, M., and N. J. Lutsko, 2017: Quantifying the zonal-mean structure of tropical precipitation. Geophys. Res. Lett., 44, 94709478, https://doi.org/10.1002/2017GL075235.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Privé, N. C., and R. A. Plumb, 2007a: Monsoon dynamics with interactive forcing. Part I: Axisymmetric studies. J. Atmos. Sci., 64, 14171430, https://doi.org/10.1175/JAS3916.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, T., 2006: The general circulation of the atmosphere. Annu. Rev. Earth Planet. Sci., 34, 655688, https://doi.org/10.1146/annurev.earth.34.031405.125144.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, T., and S. Bordoni, 2008: Eddy-mediated regime transitions in the seasonal cycle of a Hadley circulation and implications for monsoon dynamics. J. Atmos. Sci., 65, 915934, https://doi.org/10.1175/2007JAS2415.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, T., T. Bischoff, and G. H. Haug, 2014: Migrations and dynamics of the intertropical convergence zone. Nature, 513, 4553, https://doi.org/10.1038/nature13636.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Voigt, A., and et al. , 2016: The Tropical Rain belts with an Annual cycle and a Continent Model Intercomparison Project: TRACMIP. J. Adv. Model. Earth Syst., 8, 18681891, https://doi.org/10.1002/2016MS000748.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walker, C., and T. Schneider, 2006: Eddy influences on Hadley circulations: Simulations with an idealized GCM. J. Atmos. Sci., 63, 33333350, https://doi.org/10.1175/JAS3821.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walker, J. M., 2017: Seasonal and interannual variability in South Asian monsoon dynamics. Ph.D. thesis, California Institute of Technology, 121 pp.

  • Walker, J. M., and S. Bordoni, 2016: Onset and withdrawal of the large-scale South Asian monsoon: A dynamical definition using change point detection. Geophys. Res. Lett., 43, 11 81511 822, https://doi.org/10.1002/2016GL071026.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webster, P., and J. Holton, 1982: Cross-equatorial response to middle-latitude forcing in a zonally varying basic state. J. Atmos. Sci., 39, 722733, https://doi.org/10.1175/1520-0469(1982)039<0722:CERTML>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S., and N. Saiki, 1999: Abrupt onset and slow seasonal evolution of summer monsoon in an idealized GCM simulation. J. Meteor. Soc. Japan, 77, 949968, https://doi.org/10.2151/jmsj1965.77.4_949.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, W., and S.-P. Xie, 2018: A hierarchy of idealized monsoons in an intermediate GCM. J. Climate, 31, 90219036, https://doi.org/10.1175/JCLI-D-18-0084.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 125 125 113
Full Text Views 24 24 23
PDF Downloads 32 32 31

Response of Monsoon Rainfall to Changes in the Latitude of the Equatorward Coastline of a Zonally Symmetric Continent

View More View Less
  • 1 a Environmental Science and Engineering, California Institute of Technology, Pasadena, California
  • | 2 b Department of Civil, Environmental and Mechanical Engineering, University of Trento, Trento, Italy
© Get Permissions
Restricted access

Abstract

Recent studies have shown that the rapid onset of the monsoon can be interpreted as a switch in the tropical circulation, which can occur even in the absence of land–sea contrast, from a dynamical regime controlled by eddy momentum fluxes to a monsoon regime more directly controlled by energetic constraints. Here we investigate how one aspect of continental geometry, that is, the position of the equatorward coastal boundary, influences such transitions. Experiments are conducted with an aquaplanet model with a slab ocean, in which different zonally symmetric continents are prescribed in the Northern Hemisphere poleward from southern boundaries at various latitudes, with “land” having a mixed layer depth two orders of magnitude smaller than ocean. For continents extending to tropical latitudes, the simulated monsoon features a rapid migration of the convergence zone over the continent, similar to what is seen in observed monsoons. For continents with more poleward southern boundaries, the main precipitation zone remains over the ocean, moving gradually into the summer hemisphere. We show that the absence of land at tropical latitudes prevents the rapid displacement into the subtropics of the maximum in lower-level moist static energy and, with it, the establishment of an overturning circulation with a subtropical convergence zone that can transition rapidly into an angular momentum–conserving monsoon regime.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Katrina L. Hui, klhui@caltech.edu

Abstract

Recent studies have shown that the rapid onset of the monsoon can be interpreted as a switch in the tropical circulation, which can occur even in the absence of land–sea contrast, from a dynamical regime controlled by eddy momentum fluxes to a monsoon regime more directly controlled by energetic constraints. Here we investigate how one aspect of continental geometry, that is, the position of the equatorward coastal boundary, influences such transitions. Experiments are conducted with an aquaplanet model with a slab ocean, in which different zonally symmetric continents are prescribed in the Northern Hemisphere poleward from southern boundaries at various latitudes, with “land” having a mixed layer depth two orders of magnitude smaller than ocean. For continents extending to tropical latitudes, the simulated monsoon features a rapid migration of the convergence zone over the continent, similar to what is seen in observed monsoons. For continents with more poleward southern boundaries, the main precipitation zone remains over the ocean, moving gradually into the summer hemisphere. We show that the absence of land at tropical latitudes prevents the rapid displacement into the subtropics of the maximum in lower-level moist static energy and, with it, the establishment of an overturning circulation with a subtropical convergence zone that can transition rapidly into an angular momentum–conserving monsoon regime.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Katrina L. Hui, klhui@caltech.edu
Save