• Alin, A., 2010: Multicollinearity. Wiley Interdiscip. Rev.: Comput. Stat., 2, 370374, https://doi.org/10.1002/wics.84.

  • Altenhoff, A. M., O. Martius, M. Croci-Maspoli, C. Schwierz, and H. C. Davies, 2008: Linkage of atmospheric blocks and synoptic-scale Rossby waves: A climatological analysis. Tellus, 60A, 10531063, https://doi.org/10.1111/j.1600-0870.2008.00354.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baumgart, M., M. Riemer, V. Wirth, F. Teubler, and S. T. K. Lang, 2018: Potential vorticity dynamics of forecast errors: A quantitative case study. Mon. Wea. Rev., 146, 14051425, https://doi.org/10.1175/MWR-D-17-0196.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berman, J. D., and R. D. Torn, 2019: The impact of initial condition and warm conveyor belt forecast uncertainty on variability in the downstream waveguide in an ECWMF case study. Mon. Wea. Rev., 147, 40714089, https://doi.org/10.1175/MWR-D-18-0333.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Biard, J. C., and K. E. Kunkel, 2019: Automated detection of weather fronts using a deep learning neural network. Adv. Stat. Climatol. Meteor. Oceanogr., 5, 147160, https://doi.org/10.5194/ascmo-5-147-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Billet, J., M. DeLisi, B. G. Smith, and C. Gates, 1997: Use of regression techniques to predict hail size and the probability of large hail. Wea. Forecasting, 12, 154164, https://doi.org/10.1175/1520-0434(1997)012<0154:UORTTP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Binder, H., M. Boettcher, H. Joos, H. Wernli, H. Binder, M. Boettcher, H. Joos, and H. Wernli, 2016: The role of warm conveyor belts for the intensification of extratropical cyclones in Northern Hemisphere winter. J. Atmos. Sci., 73, 39974020, https://doi.org/10.1175/JAS-D-15-0302.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bosart, L. F., B. J. Moore, J. M. Cordeira, H. M. Archambault, L. F. Bosart, B. J. Moore, J. M. Cordeira, and H. M. Archambault, 2017: Interactions of North Pacific tropical, midlatitude, and polar disturbances resulting in linked extreme weather events over North America in October 2007. Mon. Wea. Rev., 145, 12451273, https://doi.org/10.1175/MWR-D-16-0230.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boutle, I. A., S. E. Belcher, and R. S. Plant, 2011: Moisture transport in midlatitude cyclones. Quart. J. Roy. Meteor. Soc., 137, 360373, https://doi.org/10.1002/qj.783.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bowman, K. P., J. C. Lin, A. Stohl, R. Draxler, P. Konopka, A. Andrews, and D. Brunner, 2013: Input data requirements for Lagrangian trajectory models. Bull. Amer. Meteor. Soc., 94, 10511058, https://doi.org/10.1175/BAMS-D-12-00076.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Browning, K. A., and N. M. Roberts, 1994: Structure of a frontal cyclone. Quart. J. Roy. Meteor. Soc., 120, 15351557, https://doi.org/10.1002/qj.49712052006.

    • Search Google Scholar
    • Export Citation
  • Browning, K. A., M. E. Hardman, T. W. Harrold, and C. W. Pardoe, 1973: The structure of rainbands within a mid-latitude depression. Quart. J. Roy. Meteor. Soc., 99, 215231, https://doi.org/10.1002/qj.49709942002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carlson, T. N., 1980: Airflow through midlatitude cyclones and the comma cloud pattern. Mon. Wea. Rev., 108, 14981509, https://doi.org/10.1175/1520-0493(1980)108<1498:ATMCAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chattopadhyay, A., P. Hassanzadeh, and S. Pasha, 2020: Predicting clustered weather patterns: A test case for applications of convolutional neural networks to spatio-temporal climate data. Sci. Rep., 10, 1317, https://doi.org/10.1038/s41598-020-57897-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dacre, H. F., and S. L. Gray, 2013: Quantifying the climatological relationship between extratropical cyclone intensity and atmospheric precursors. Geophys. Res. Lett., 40, 23222327, https://doi.org/10.1002/grl.50105.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dacre, H. F., O. Martínez-Alvarado, and C. O. Mbengue, 2019: Linking atmospheric rivers and warm conveyor belt airflows. J. Hydrometeor., 20, 11831196, https://doi.org/10.1175/JHM-D-18-0175.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davini, P., S. Corti, F. D’Andrea, G. Rivière, and J. von Hardenberg, 2017: Improved winter European atmospheric blocking frequencies in high-resolution global climate simulations. J. Adv. Model. Earth Syst., 9, 26152634, https://doi.org/10.1002/2017MS001082.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, J., and M. Goadrich, 2006: The relationship between precision-recall and ROC curves. Proc. 23rd Int. Conf. on Machine Learning, Pittsburgh, PA, ACM, 233–240, https://doi.org/10.1145/1143844.1143874.

    • Crossref
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dreiseitl, S., and L. Ohno-Machado, 2002: Logistic regression and artificial neural network classification models: A methodology review. J. Biomed. Inform., 35, 352359, https://doi.org/10.1016/S1532-0464(03)00034-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drobot, S. D., and J. A. Maslanik, 2002: A practical method for long-range forecasting of ice severity in the Beaufort Sea. Geophys. Res. Lett., 29, 1213, https://doi.org/10.1029/2001GL014173.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eckhardt, S., A. Stohl, H. Wernli, P. James, C. Forster, and N. Spichtinger, 2004: A 15-year climatology of warm conveyor belts. J. Climate, 17, 218237, https://doi.org/10.1175/1520-0442(2004)017<0218:AYCOWC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Field, P. R., and R. Wood, 2007: Precipitation and cloud structure in midlatitude cyclones. J. Climate, 20, 233254, https://doi.org/10.1175/JCLI3998.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gagne, D. J., S. E. Haupt, D. W. Nychka, and G. Thompson, 2019: Interpretable deep learning for spatial analysis of severe hailstorms. Mon. Wea. Rev., 147, 28272845, https://doi.org/10.1175/MWR-D-18-0316.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grams, C. M., and H. M. Archambault, 2016: The key role of diabatic outflow in amplifying the midlatitude flow: A representative case study of weather systems surrounding western North Pacific extratropical transition. Mon. Wea. Rev., 144, 38473869, https://doi.org/10.1175/MWR-D-15-0419.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grams, C. M., and Coauthors, 2011: The key role of diabatic processes in modifying the upper-tropospheric wave guide: A North Atlantic case-study. Quart. J. Roy. Meteor. Soc., 137, 21742193, https://doi.org/10.1002/qj.891.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grams, C. M., S. C. Jones, C. A. Davis, P. A. Harr, and M. Weissmann, 2013: The impact of Typhoon Jangmi (2008) on the midlatitude flow. Part I: Upper-level ridgebuilding and modification of the jet. Quart. J. Roy. Meteor. Soc., 139, 21482164, https://doi.org/10.1002/qj.2091.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grams, C. M., H. Binder, S. Pfahl, N. Piaget, and H. Wernli, 2014: Atmospheric processes triggering the central European floods in June 2013. Nat. Hazards Earth Syst. Sci., 14, 16911702, https://doi.org/10.5194/nhess-14-1691-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grams, C. M., L. Magnusson, and E. Madonna, 2018: An atmospheric dynamics perspective on the amplification and propagation of forecast error in numerical weather prediction models: A case study. Quart. J. Roy. Meteor. Soc., 144, 25772591, https://doi.org/10.1002/qj.3353.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gray, S. L., C. M. Dunning, J. Methven, G. Masato, and J. M. Chagnon, 2014: Systematic model forecast error in Rossby wave structure. Geophys. Res. Lett., 41, 29792987, https://doi.org/10.1002/2014GL059282.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., and G. N. Kiladis, 2014: Skill of the MJO and Northern Hemisphere blocking in GEFS medium-range reforecasts. Mon. Wea. Rev., 142, 868885, https://doi.org/10.1175/MWR-D-13-00199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harada, Y., and Coauthors, 2016: The JRA-55 Reanalysis: Representation of atmospheric circulation and climate variability. J. Meteor. Soc. Japan, 94, 269302, https://doi.org/10.2151/jmsj.2016-015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harrold, T. W., 1973: Mechanisms influencing the distribution of precipitation within baroclinic disturbances. Quart. J. Roy. Meteor. Soc., 99, 232251, https://doi.org/10.1002/qj.49709942003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hosmer, D. W., and S. Lemeshow, 2000: Applied Logistic Regression. 2nd ed. Wiley, 373 pp.

    • Crossref
    • Export Citation
  • Japan Meteorological Agency, 2013: JRA-55: Japanese 55-year Reanalysis, daily 3-hourly and 6-hourly data. National Center for Atmospheric Research Computational and Information Systems Laboratory, accessed 1 February 2021, https://doi.org/10.5065/D6HH6H41.

    • Crossref
    • Export Citation
  • Joos, H., and H. Wernli, 2012: Influence of microphysical processes on the potential vorticity development in a warm conveyor belt: A case-study with the limited-area model COSMO. Quart. J. Roy. Meteor. Soc., 138, 407418, https://doi.org/10.1002/qj.934.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joos, H., and R. M. Forbes, 2016: Impact of different IFS microphysics on a warm conveyor belt and the downstream flow evolution. Quart. J. Roy. Meteor. Soc., 142, 27272739, https://doi.org/10.1002/qj.2863.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • King, G., and L. Zeng, 2003: Logistic regression in rare events data. J. Stat. Software, 8, 137163, https://doi.org/10.18637/jss.v008.i02.

  • Kobayashi, S., and Coauthors, 2015: The JRA-55 Reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 548, https://doi.org/10.2151/jmsj.2015-001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuo, Y.-H., M. A. Shapiro, and E. G. Donall, 1991: The interaction between baroclinic and diabatic processes in a numerical simulation of a rapidly intensifying extratropical marine cyclone. Mon. Wea. Rev., 119, 368384, https://doi.org/10.1175/1520-0493(1991)119<0368:TIBBAD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lagerquist, R., A. M. McGovern, and D. J. Gagne, 2019: Deep learning for spatially explicit prediction of synoptic-scale fronts. Wea. Forecasting, 34, 11371160, https://doi.org/10.1175/WAF-D-18-0183.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lamberson, W. S., R. D. Torn, L. F. Bosart, and L. Magnusson, 2016: Diagnosis of the source and evolution of medium-range forecast errors for extratropical cyclone Joachim. Wea. Forecasting, 31, 11971214, https://doi.org/10.1175/WAF-D-16-0026.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leroy, A., and M. C. Wheeler, 2008: Statistical prediction of weekly tropical cyclone activity in the Southern Hemisphere. Mon. Wea. Rev., 136, 36373654, https://doi.org/10.1175/2008MWR2426.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y., and Coauthors, 2016: Application of deep convolutional neural networks for detecting extreme weather in climate datasets. arXiv, http://arxiv.org/abs/1605.01156.

  • Maddison, J. W., S. L. Gray, O. Martínez-Alvarado, and K. D. Williams, 2019: Upstream cyclone influence on the predictability of block onsets over the Euro-Atlantic region. Mon. Wea. Rev., 147, 12771296, https://doi.org/10.1175/MWR-D-18-0226.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maddison, J. W., S. L. Gray, O. Martínez-Alvarado, and K. D. Williams, 2020: Impact of model upgrades on diabatic processes in extratropical cyclones and downstream forecast evolution. Quart. J. Roy. Meteor. Soc., 146, 13221350, https://doi.org/10.1002/qj.3739.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madonna, E., S. Limbach, C. Aebi, H. Joos, H. Wernli, and O. Martius, 2014a: On the co-occurrence of warm conveyor belt outflows and PV streamers. J. Atmos. Sci., 71, 36683673, https://doi.org/10.1175/JAS-D-14-0119.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madonna, E., H. Wernli, H. Joos, and O. Martius, 2014b: Warm conveyor belts in the ERA-Interim dataset (1979–2010). Part I: Climatology and potential vorticity evolution. J. Climate, 27, 326, https://doi.org/10.1175/JCLI-D-12-00720.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madonna, E., M. Boettcher, C. M. Grams, H. Joos, O. Martius, and H. Wernli, 2015: Verification of North Atlantic warm conveyor belt outflows in ECMWF forecasts. Quart. J. Roy. Meteor. Soc., 141, 13331344, https://doi.org/10.1002/qj.2442.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manzato, A., 2007: A note on the maximum Pierce skill score. Wea. Forecasting, 22, 11481154, https://doi.org/10.1175/WAF1041.1.

  • Martínez-Alvarado, O., E. Madonna, S. L. Gray, and H. Joos, 2016: A route to systematic error in forecasts of Rossby waves. Quart. J. Roy. Meteor. Soc., 142, 196210, https://doi.org/10.1002/qj.2645.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martínez-Alvarado, O., J. W. Maddison, S. L. Gray, and K. D. Williams, 2018: Atmospheric blocking and upper-level Rossby-wave forecast skill dependence on model configuration. Quart. J. Roy. Meteor. Soc., 144, 21652181, https://doi.org/10.1002/qj.3326.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Masato, G., B. J. Hoskins, and T. Woollings, 2013: Winter and summer Northern Hemisphere blocking in CMIP5 models. J. Climate, 26, 70447059, https://doi.org/10.1175/JCLI-D-12-00466.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matsueda, M., 2009: Blocking predictability in operational medium-range ensemble forecasts. SOLA, 5, 113116, https://doi.org/10.2151/sola.2009-029.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matsueda, M., R. Mizuta, and S. Kusunoki, 2009: Future change in wintertime atmospheric blocking simulated using a 20-km-mesh atmospheric global circulation model. J. Geophys. Res., 114, D12114, https://doi.org/10.1029/2009JD011919.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matthews, B. W., 1975: Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochim. Biophys. Acta, 405, 442451, https://doi.org/10.1016/0005-2795(75)90109-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McGovern, A., R. Lagerquist, D. J. Gagne, G. E. Jergensen, K. L. Elmore, C. R. Homeyer, and T. Smith, 2019: Making the black box more transparent: Understanding the physical implications of machine learning. Bull. Amer. Meteor. Soc., 100, 21752199, https://doi.org/10.1175/BAMS-D-18-0195.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McTaggart-Cowan, R., J. R. Gyakum, and R. W. Moore, 2017: The baroclinic moisture flux. Mon. Wea. Rev., 145, 2547, https://doi.org/10.1175/MWR-D-16-0153.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Methven, J., 2015: Potential vorticity in warm conveyor belt outflow. Quart. J. Roy. Meteor. Soc., 141, 10651071, https://doi.org/10.1002/qj.2393.

  • Mohr, S., M. Kunz, and K. Keuler, 2015: Development and application of a logistic model to estimate the past and future hail potential in Germany. J. Geophys. Res. Atmos., 120, 39393956, https://doi.org/10.1002/2014JD022959.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., and M. A. Shapiro, 1993: The life cycle of an extratropical marine cyclone. Part I: Frontal-cyclone evolution and thermodynamic air–sea interaction. Mon. Wea. Rev., 121, 21532176, https://doi.org/10.1175/1520-0493(1993)121<2153:TLCOAE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oertel, A., M. Boettcher, H. Joos, M. Sprenger, H. Konow, M. Hagen, and H. Wernli, 2019: Convective activity in an extratropical cyclone and its warm conveyor belt—A case-study combining observations and a convection-permitting model simulation. Quart. J. Roy. Meteor. Soc., 145, 14061426, https://doi.org/10.1002/qj.3500.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pegion, K., and Coauthors, 2019: The Subseasonal Experiment (SUBX). Bull. Amer. Meteor. Soc., 100, 20432060, https://doi.org/10.1175/BAMS-D-18-0270.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pfahl, S., E. Madonna, M. Boettcher, H. Joos, and H. Wernli, 2014: Warm conveyor belts in the ERA-Interim dataset (1979–2010). Part II: Moisture origin and relevance for precipitation. J. Climate, 27, 2740, https://doi.org/10.1175/JCLI-D-13-00223.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pfahl, S., C. Schwierz, M. Croci-Maspoli, C. M. Grams, and H. Wernli, 2015: Importance of latent heat release in ascending air streams for atmospheric blocking. Nat. Geosci., 8, 610614, https://doi.org/10.1038/ngeo2487.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pomroy, H. R., and A. J. Thorpe, 2000: The evolution and dynamical role of reduced upper-tropospheric potential vorticity in intensive observing period one of FASTEX. Mon. Wea. Rev., 128, 18171834, https://doi.org/10.1175/1520-0493(2000)128<1817:TEADRO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Quinlan, J. R., 1986: Induction of decision trees. Mach. Learn., 1, 81106, https://doi.org/10.1007/BF00116251.

  • Quinting, J. F., and M. J. Reeder, 2017: Southeastern Australian heat waves from a trajectory viewpoint. Mon. Wea. Rev., 145, 41094125, https://doi.org/10.1175/MWR-D-17-0165.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Quinting, J. F., and F. Vitart, 2019: Representation of synoptic-scale Rossby wave packets and blocking in the S2S prediction project database. Geophys. Res. Lett., 46, 10701078, https://doi.org/10.1029/2018GL081381.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodwell, M. J., D. S. Richardson, D. B. Parsons, and H. Wernli, 2018: Flow-dependent reliability: A path to more skillful ensemble forecasts. Bull. Amer. Meteor. Soc., 99, 10151026, https://doi.org/10.1175/BAMS-D-17-0027.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogerson, P., 2001: Statistical Methods for Geography. SAGE Publications Inc., 236 pp.

    • Crossref
    • Export Citation
  • Rossa, A. M., H. Wernli, and H. C. Davies, 2000: Growth and decay of an extra-tropical cyclone’s PV-tower. Meteor. Atmos. Phys., 73, 139156, https://doi.org/10.1007/s007030050070.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Röthlisberger, M., O. Martius, and H. Wernli, 2018: Northern Hemisphere Rossby wave initiation events on the extratropical jet—A climatological analysis. J. Climate, 31, 743760, https://doi.org/10.1175/JCLI-D-17-0346.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schäfler, A., and F. Harnisch, 2015: Impact of the inflow moisture on the evolution of a warm conveyor belt. Quart. J. Roy. Meteor. Soc., 141, 299310, https://doi.org/10.1002/qj.2360.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schäfler, A., M. Boettcher, C. M. Grams, M. Rautenhaus, H. Sodemann, and H. Wernli, 2014: Planning aircraft measurements within a warm conveyor belt. Weather, 69, 161166, https://doi.org/10.1002/wea.2245.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schiemann, R., and Coauthors, 2017: The resolution sensitivity of Northern Hemisphere blocking in four 25-km atmospheric global circulation models. J. Climate, 30, 337358, https://doi.org/10.1175/JCLI-D-16-0100.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Slade, S. A., and E. D. Maloney, 2013: An intraseasonal prediction model of Atlantic and east Pacific tropical cyclone genesis. Mon. Wea. Rev., 141, 19251942, https://doi.org/10.1175/MWR-D-12-00268.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sprenger, M., and H. Wernli, 2015: The LAGRANTO Lagrangian analysis tool—Version 2.0. Geosci. Model Dev., 8, 25692586, https://doi.org/10.5194/gmd-8-2569-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sprenger, M., and Coauthors, 2017: Global climatologies of Eulerian and Lagrangian flow features based on ERA-Interim. Bull. Amer. Meteor. Soc., 98, 17391748, https://doi.org/10.1175/BAMS-D-15-00299.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steinfeld, D., and S. Pfahl, 2019: The role of latent heating in atmospheric blocking dynamics: A global climatology. Climate Dyn., 53, 61596180, https://doi.org/10.1007/s00382-019-04919-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stohl, A., L. Haimberger, M. P. Scheele, and H. Wernli, 2001: An intercomparison of results from three trajectory models. Meteor. Appl., 8, 127135, https://doi.org/10.1017/S1350482701002018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Teubler, F., and M. Riemer, 2016: Dynamics of Rossby wave packets in a quantitative potential vorticity–potential temperature framework. J. Atmos. Sci., 73, 10631081, https://doi.org/10.1175/JAS-D-15-0162.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tibaldi, S., and F. Molteni, 1990: On the operational predictability of blocking. Tellus, 42A, 343365, https://doi.org/10.1034/j.1600-0870.1990.t01-2-00003.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vapnik, V., 1963: Pattern recognition using generalized portrait method. Autom. Remote Control, 24, 774780.

  • Vitart, F., and Coauthors, 2017: The Subseasonal to Seasonal (S2S) Prediction project database. Bull. Amer. Meteor. Soc., 98, 163173, https://doi.org/10.1175/BAMS-D-16-0017.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wernli, H., 1997: A Lagrangian-based analysis of extratropical cyclones. II: A detailed case-study. Quart. J. Roy. Meteor. Soc., 123, 16771706, https://doi.org/10.1002/qj.49712354211.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wernli, H., and H. C. Davies, 1997: A Lagrangian-based analysis of extratropical cyclones: The method and some applications. Quart. J. Roy. Meteor. Soc., 123, 467489, https://doi.org/10.1002/qj.49712353811.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wernli, H., and C. Schwierz, 2006: Surface cyclones in the ERA-40 dataset (1958–2001). Part I: Novel identification method and global climatology. J. Atmos. Sci., 63, 24862507, https://doi.org/10.1175/JAS3766.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wernli, H., and M. Sprenger, 2007: Identification and ERA-15 climatology of potential vorticity streamers and cutoffs near the extratropical tropopause. J. Atmos. Sci., 64, 15691586, https://doi.org/10.1175/JAS3912.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wernli, H., M. Boettcher, H. Joos, A. K. Miltenberger, and P. Spichtinger, 2016: A trajectory-based classification of ERA-Interim ice clouds in the region of the North Atlantic storm track. Geophys. Res. Lett., 43, 66576664, https://doi.org/10.1002/2016GL068922.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Youden, W. J., 1950: Index for rating diagnostic tests. Cancer, 3, 3235, https://doi.org/10.1002/1097-0142(1950)3:1<32::AID-CNCR2820030106>3.0.CO;2-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 428 428 53
Full Text Views 203 203 27
PDF Downloads 217 217 36

Toward a Systematic Evaluation of Warm Conveyor Belts in Numerical Weather Prediction and Climate Models. Part I: Predictor Selection and Logistic Regression Model

View More View Less
  • 1 a Institute of Meteorology and Climate Research (IMK-TRO), Karlsruhe Institute of Technology, Karlsruhe, Germany
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

The physical and dynamical processes associated with warm conveyor belts (WCBs) importantly affect midlatitude dynamics and are sources of forecast uncertainty. Moreover, WCBs modulate the large-scale extratropical circulation and can communicate and amplify forecast errors. Therefore, it is desirable to assess the representation of WCBs in numerical weather prediction (NWP) models in particular on the medium to subseasonal forecast range. Most often, WCBs are identified as coherent bundles of Lagrangian trajectories that ascend in a time interval of 2 days from the lower to the upper troposphere. Although this Lagrangian approach has advanced the understanding of the involved processes significantly, the calculation of trajectories is computationally expensive and requires NWP data at a high spatial [O(~1)], vertical [O(~10hPa)], and temporal resolution [O(~36h)]. In this study, we present a statistical framework that derives footprints of WCBs from coarser NWP data that are routinely available. To this end, gridpoint-specific multivariate logistic regression models are developed for the Northern Hemisphere using meteorological parameters from ERA-Interim data as predictors and binary footprints of WCB inflow, ascent, and outflow based on a Lagrangian dataset as predictands. Stepwise forward selection identifies the most important predictors for these three WCB stages. The logistic models are reliable in replicating the climatological frequency of WCBs as well as the footprints of WCBs at instantaneous time steps. The novel framework is a first step toward a systematic evaluation of WCB representation in large datasets such as subseasonal ensemble reforecasts or climate projections.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JAS-D-20-0139.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

This article is included in the Process-Oriented Model Diagnostics Special Collection.

This article is included in the Waves to Weather (W2W) Special Collection.

Corresponding author: Julian Francesco Quinting, julian.quinting@kit.edu

This article has a companion article which can be found at http://journals.ametsoc.org/doi/abs/10.1175/JAS-D-20-0385.1.

Abstract

The physical and dynamical processes associated with warm conveyor belts (WCBs) importantly affect midlatitude dynamics and are sources of forecast uncertainty. Moreover, WCBs modulate the large-scale extratropical circulation and can communicate and amplify forecast errors. Therefore, it is desirable to assess the representation of WCBs in numerical weather prediction (NWP) models in particular on the medium to subseasonal forecast range. Most often, WCBs are identified as coherent bundles of Lagrangian trajectories that ascend in a time interval of 2 days from the lower to the upper troposphere. Although this Lagrangian approach has advanced the understanding of the involved processes significantly, the calculation of trajectories is computationally expensive and requires NWP data at a high spatial [O(~1)], vertical [O(~10hPa)], and temporal resolution [O(~36h)]. In this study, we present a statistical framework that derives footprints of WCBs from coarser NWP data that are routinely available. To this end, gridpoint-specific multivariate logistic regression models are developed for the Northern Hemisphere using meteorological parameters from ERA-Interim data as predictors and binary footprints of WCB inflow, ascent, and outflow based on a Lagrangian dataset as predictands. Stepwise forward selection identifies the most important predictors for these three WCB stages. The logistic models are reliable in replicating the climatological frequency of WCBs as well as the footprints of WCBs at instantaneous time steps. The novel framework is a first step toward a systematic evaluation of WCB representation in large datasets such as subseasonal ensemble reforecasts or climate projections.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JAS-D-20-0139.s1.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

This article is included in the Process-Oriented Model Diagnostics Special Collection.

This article is included in the Waves to Weather (W2W) Special Collection.

Corresponding author: Julian Francesco Quinting, julian.quinting@kit.edu

This article has a companion article which can be found at http://journals.ametsoc.org/doi/abs/10.1175/JAS-D-20-0385.1.

Supplementary Materials

    • Supplemental Materials (ZIP 22.58 MB)
Save