• Abarca, S. F., and M. T. Montgomery, 2015: Are eyewall replacement cycles governed largely by axisymmetric balance dynamics? J. Atmos. Sci., 72, 8287, https://doi.org/10.1175/JAS-D-14-0151.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Asselin, R., 1972: Frequency filter for time integrations. Mon. Wea. Rev., 100, 487490, https://doi.org/10.1175/1520-0493(1972)100<0487:FFFTI>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bartello, P., and T. Warn, 1996: Self-similarity of decaying two-dimensional turbulence. J. Fluid Mech., 326, 357372, https://doi.org/10.1017/S002211209600835X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bell, M. M., M. T. Montgomery, and W.-C. Lee, 2012: An axisymmetric view of concentric eyewall evolution in Hurricane Rita (2005). J. Atmos. Sci., 69, 24142432, https://doi.org/10.1175/JAS-D-11-0167.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Black, M. L., and H. E. Willoughby, 1992: The concentric eyewall cycle of Hurricane Gilbert. Mon. Wea. Rev., 120, 947957, https://doi.org/10.1175/1520-0493(1992)120<0947:TCECOH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cotto, A., I. Gonzalez III, and H. E. Willoughby, 2015: Synthesis of vortex Rossby waves. Part I: Episodically forced waves in the inner waveguide. J. Atmos. Sci., 72, 39403957, https://doi.org/10.1175/JAS-D-15-0004.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMaria, M., R. T. DeMaria, J. A. Knaff, and D. Molenar, 2012: Tropical cyclone lightning and rapid intensity change. Mon. Wea. Rev., 140, 18281842, https://doi.org/10.1175/MWR-D-11-00236.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Didlake, A. C., Jr., G. M. Heymsfield, P. D. Reasor, and S. R. Guimond, 2017: Concentric eyewall asymmetries in Hurricane Gonzalo (2014) observed by airborne radar. Mon. Wea. Rev., 145, 729749, https://doi.org/10.1175/MWR-D-16-0175.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hendricks, E. A., W. H. Schubert, Y.-H. Chen, and H.-C. Kuo, 2014: Hurricane eyewall evolution in a forced shallow-water model. J. Atmos. Sci., 71, 16231643, https://doi.org/10.1175/JAS-D-13-0303.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., S. S. Chen, B. F. Smull, W.-C. Lee, and M. M. Bell, 2007: Hurricane intensity and eyewall replacement. Science, 315, 12351239, https://doi.org/10.1126/science.1135650.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, Y.-H., M. T. Montgomery, and C.-C. Wu, 2012: Concentric eyewall formation in Typhoon Sinlaku (2008). Part II: Axisymmetric dynamical processes. J. Atmos. Sci., 69, 662674, https://doi.org/10.1175/JAS-D-11-0114.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaplan, J., and M. DeMaria, 2003: Large-scale characteristics of rapidly intensifying tropical cyclones in the North Atlantic basin. Wea. Forecasting, 18, 10931108, https://doi.org/10.1175/1520-0434(2003)018<1093:LCORIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaplan, J., M. DeMaria, and J. A. Knaff, 2010: A revised tropical cyclone rapid intensification index for the Atlantic and eastern North Pacific basins. Wea. Forecasting, 25, 220241, https://doi.org/10.1175/2009WAF2222280.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kepert, J. D., 2013: How does the boundary layer contribute to eyewall replacement cycles in axisymmetric tropical cyclones? J. Atmos. Sci., 70, 28082830, https://doi.org/10.1175/JAS-D-13-046.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kepert, J. D., and D. S. Nolan, 2014: Reply to “Comments on ‘How does the boundary layer contribute to eyewall replacement cycles in axisymmetric tropical cyclones?’” J. Atmos. Sci., 71, 46924704, https://doi.org/10.1175/JAS-D-14-0014.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., and W. H. Schubert, 2001: Mesovortices, polygonal flow patterns, and rapid pressure falls in hurricane-like vortices. J. Atmos. Sci., 58, 21962209, https://doi.org/10.1175/1520-0469(2001)058<2196:MPFPAR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., and W. H. Schubert, 2004: Mesovortices in Hurricane Isabel (2003). Bull. Amer. Meteor. Soc., 85, 151153, https://doi.org/10.1175/BAMS-85-2-151.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., and M. Sitkowski, 2009: An objective model for identifying secondary eyewall formation in hurricanes. Mon. Wea. Rev., 137, 876892, https://doi.org/10.1175/2008MWR2701.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., W. H. Schubert, and M. T. Montgomery, 2000: Unstable interactions between a hurricane’s primary eyewall and a secondary ring of enhanced vorticity. J. Atmos. Sci., 57, 38933917, https://doi.org/10.1175/1520-0469(2001)058<3893:UIBAHS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., B. D. McNoldy, and W. H. Schubert, 2002: Vortical swirls in hurricane eye clouds. Mon. Wea. Rev., 130, 31443149, https://doi.org/10.1175/1520-0493(2002)130<3144:VSIHEC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuo, H.-C., C.-P. Chang, Y.-T. Yang, and H.-J. Jiang, 2009: Western North Pacific typhoons with concentric eyewalls. Mon. Wea. Rev., 137, 37583770, https://doi.org/10.1175/2009MWR2850.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lai, T.-K., K. Menelaou, and M. K. Yau, 2019: Barotropic instability across the moat and inner eyewall dissipation: A numerical study of Hurricane Wilma (2005). J. Atmos. Sci., 76, 9891013, https://doi.org/10.1175/JAS-D-18-0191.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lai, T.-K., E. A. Hendricks, K. Menelaou, and M. K. Yau, 2021: Roles of barotropic instability across the moat in inner eyewall decay and outer eyewall intensification: Three-dimensional numerical experiments. J. Atmos. Sci., 78, 473496, https://doi.org/10.1175/JAS-D-20-0168.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McNoldy, B. D., 2020: Tropical cyclone radar loops. University of Miami Rosenstiel School of Marine and Atmospheric Science, http://bmcnoldy.rsmas.miami.edu/tropics/radar/.

  • McWilliams, J. C., L. P. Graves, and M. T. Montgomery, 2003: A formal theory for vortex Rossby waves and vortex evolution. Geophys. Astrophys. Fluid Dyn., 97, 275309, https://doi.org/10.1080/0309192031000108698.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., S. F. Abarca, R. K. Smith, C.-C. Wu, and Y.-H. Huang, 2014: Comments on “How does the boundary layer contribute to eyewall replacement cycles in axisymmetric tropical cyclones?” J. Atmos. Sci., 71, 46824691, https://doi.org/10.1175/JAS-D-13-0286.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Powell, M. D., 1990: Boundary layer structure and dynamics in outer hurricane rainbands. Part II: Downdraft modification and mixed layer recovery. Mon. Wea. Rev., 118, 918938, https://doi.org/10.1175/1520-0493(1990)118<0918:BLSADI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., M. T. Montgomery, F. D. Marks Jr., and J. F. Gamache, 2000: Low-wavenumber structure and evolution of the hurricane inner core observed by airborne dual-Doppler radar. Mon. Wea. Rev., 128, 16531680, https://doi.org/10.1175/1520-0493(2000)128<1653:LWSAEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robert, A. J., 1966: The integration of a low order spectral form of the primitive meteorological equations. J. Meteor. Soc. Japan, 44, 237245, https://doi.org/10.2151/jmsj1965.44.5_237.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rozoff, C. M., W. H. Schubert, and J. P. Kossin, 2008: Some dynamical aspects of tropical cyclone concentric eyewalls. Quart. J. Roy. Meteor. Soc., 134, 583593, https://doi.org/10.1002/qj.237.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rozoff, C. M., J. P. Kossin, W. H. Schubert, and P. Mulero, 2009: Internal control of hurricane intensity variability: The dual nature of potential vorticity mixing. J. Atmos. Sci., 66, 133147, https://doi.org/10.1175/2008JAS2717.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Samsury, C. E., and E. J. Zipser, 1995: Secondary wind maxima in hurricanes: Airflow and relationship to rainband. Mon. Wea. Rev., 123, 35023517, https://doi.org/10.1175/1520-0493(1995)123<3502:SWMIHA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schubert, W. H., M. T. Montgomery, R. K. Taft, T. A. Gunn, S. R. Fulton, J. P. Kossin, and J. P. Edwards, 1999: Polygonal eyewalls, asymmetric eye contraction, and potential vorticity mixing in hurricanes. J. Atmos. Sci., 56, 11971223, https://doi.org/10.1175/1520-0469(1999)056<1197:PEAECA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shapiro, L. J., and H. E. Willoughby, 1982: The response of balanced hurricanes to local sources of heat and momentum. J. Atmos. Sci., 39, 378394, https://doi.org/10.1175/1520-0469(1982)039<0378:TROBHT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheets, R. C., and N. E. LaSeur, 1979: Project STORMFURY: Present status–future plans. WMO Bull., 28, 1723.

  • Sitkowski, M., J. P. Kossin, and C. M. Rozoff, 2011: Intensity and structure changes during hurricane eyewall replacement cycles. Mon. Wea. Rev., 139, 38293847, https://doi.org/10.1175/MWR-D-11-00034.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and et al. , 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., http://doi.org/10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Tsujino, S., K. Tsuboki, and H.-C. Kuo, 2017: Structure and maintenance mechanism of long-lived concentric eyewalls associated with simulated Typhoon Bolaven (2012). J. Atmos. Sci., 74, 36093634, https://doi.org/10.1175/JAS-D-16-0236.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., 1988: The dynamics of the tropical cyclone core. Aust. Meteor. Mag., 36, 183191.

  • Willoughby, H. E., J. A. Clos, and M. G. Shoreibah, 1982: Concentric eye walls, secondary wind maxima, and the evolution of the hurricane vortex. J. Atmos. Sci., 39, 395411, https://doi.org/10.1175/1520-0469(1982)039<0395:CEWSWM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., D. P. Jorgensen, R. A. Black, and S. L. Rosenthal, 1985: Project STORMFURY: A scientific chronicle 1962–1983. Bull. Amer. Meteor. Soc., 66, 505514, https://doi.org/10.1175/1520-0477(1985)066<0505:PSASC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, K. M., and E. A. Ritchie, 2015: A definition for rapid weakening of North Atlantic and eastern North Pacific tropical cyclones. Geophys. Res. Lett., 42, 10 09110 097, https://doi.org/10.1002/2015GL066697.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, C.-C., H.-J. Cheng, Y. Wang, and K.-H. Chou, 2009: A numerical investigation of the eyewall evolution in a landfalling typhoon. Mon. Wea. Rev., 137, 2140, https://doi.org/10.1175/2008MWR2516.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, C.-C., S.-N. Wu, and H.-H. Wei, 2016: The role of convective heating in tropical cyclone eyewall ring evolution. J. Atmos. Sci., 73, 319330, https://doi.org/10.1175/JAS-D-15-0085.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, Y.-T., H.-C. Kuo, E. A. Hendricks, and M. S. Peng, 2013: Structural and intensity changes of concentric eyewall typhoons in the western North Pacific basin. Mon. Wea. Rev., 141, 26322648, https://doi.org/10.1175/MWR-D-12-00251.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, X., and B. Wang, 2011: Mechanism of concentric eyewall replacement cycles and associated intensity change. J. Atmos. Sci., 68, 972988, https://doi.org/10.1175/2011JAS3575.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, T., D.-L. Zhang, and F. Weng, 2004: Numerical simulation of Hurricane Bonnie (1998). Part I: Eyewall evolution and intensity changes. Mon. Wea. Rev., 132, 225241, https://doi.org/10.1175/1520-0493(2004)132<0225:NSOHBP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, Z., and P. Zhu, 2014: The role of outer rainband convection in governing the eyewall replacement cycle in numerical simulations of tropical cyclones. J. Geophys. Res. Atmos., 119, 80498072, https://doi.org/10.1002/2014JD021899.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 93 93 43
Full Text Views 37 37 24
PDF Downloads 46 46 31

Roles of Barotropic Instability across the Moat in Inner Eyewall Decay and Outer Eyewall Intensification: Essential Dynamics

View More View Less
  • 1 a Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada
  • | 2 b National Center for Atmospheric Research, Boulder, Colorado
  • | 3 c Environment and Climate Change Canada, Dorval, Quebec, Canada
© Get Permissions
Restricted access

Abstract

Intense tropical cyclones (TCs) often experience secondary eyewall formations and the ensuing eyewall replacement cycles. Better understanding of the underlying dynamics is crucial to make improvements to the TC intensity and structure forecasting. Radar imagery of some double-eyewall TCs and a real-case simulation study indicated that the barotropic instability (BI) across the moat (aka type-2 BI) may play a role in inner eyewall decay. A three-dimensional numerical study accompanying this paper pointed out that type-2 BI is able to withdraw the inner eyewall absolute angular momentum (AAM) and increase the outer eyewall AAM through the eddy radial transport of eddy AAM. This paper explores the reason why the eddy radial transport of eddy AAM is intrinsically nonzero. Linear and nonlinear shallow water experiments are performed and they produce expected evolutions under type-2 BI. It will be shown that only nonlinear experiments have changes in AAM over the inner and outer eyewalls, and the changes solely originate from the eddy radial transport of eddy AAM. This result highlights the importance of nonlinearity of type-2 BI. Based on the distribution of vorticity perturbations and the balanced-waves arguments, it will be demonstrated that the nonzero eddy radial transport of eddy AAM is an essential outcome from the intrinsic interaction between the mutually growing vortex Rossby waves across the moat under type-2 BI. The analyses of the most unstable mode support the findings and will further attribute the inner eyewall decay and outer eyewall intensification to the divergence and convergence of the eddy angular momentum flux, respectively.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

This article has a companion article which can be found at http://journals.ametsoc.org/doi/abs/10.1175/JAS-D-20-0168.1.

Corresponding author: Tsz-Kin Lai, eric.lai@mail.mcgill.ca

Abstract

Intense tropical cyclones (TCs) often experience secondary eyewall formations and the ensuing eyewall replacement cycles. Better understanding of the underlying dynamics is crucial to make improvements to the TC intensity and structure forecasting. Radar imagery of some double-eyewall TCs and a real-case simulation study indicated that the barotropic instability (BI) across the moat (aka type-2 BI) may play a role in inner eyewall decay. A three-dimensional numerical study accompanying this paper pointed out that type-2 BI is able to withdraw the inner eyewall absolute angular momentum (AAM) and increase the outer eyewall AAM through the eddy radial transport of eddy AAM. This paper explores the reason why the eddy radial transport of eddy AAM is intrinsically nonzero. Linear and nonlinear shallow water experiments are performed and they produce expected evolutions under type-2 BI. It will be shown that only nonlinear experiments have changes in AAM over the inner and outer eyewalls, and the changes solely originate from the eddy radial transport of eddy AAM. This result highlights the importance of nonlinearity of type-2 BI. Based on the distribution of vorticity perturbations and the balanced-waves arguments, it will be demonstrated that the nonzero eddy radial transport of eddy AAM is an essential outcome from the intrinsic interaction between the mutually growing vortex Rossby waves across the moat under type-2 BI. The analyses of the most unstable mode support the findings and will further attribute the inner eyewall decay and outer eyewall intensification to the divergence and convergence of the eddy angular momentum flux, respectively.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

This article has a companion article which can be found at http://journals.ametsoc.org/doi/abs/10.1175/JAS-D-20-0168.1.

Corresponding author: Tsz-Kin Lai, eric.lai@mail.mcgill.ca
Save