Development Processes of the Explosive Cyclones over the Northwest Pacific: Potential Vorticity Tendency Inversion

Joonsuk M. Kang aSchool of Earth and Environmental Sciences, Seoul National University, Seoul, South Korea

Search for other papers by Joonsuk M. Kang in
Current site
Google Scholar
PubMed
Close
and
Seok-Woo Son aSchool of Earth and Environmental Sciences, Seoul National University, Seoul, South Korea

Search for other papers by Seok-Woo Son in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A novel method that quantitatively evaluates the development processes of extratropical cyclones is devised and applied to the explosive cyclones over the northwest Pacific in the cold season (October–April). By inverting the potential vorticity (PV) tendency equation, the contribution of dynamic and thermodynamic processes at different levels to explosive cyclone development is quantified. In terms of geostrophic vorticity tendency at 850 hPa, which is utilized to quantify cyclone development, the leading factors for the explosive cyclone intensification are upper-level PV advection by the mean zonal flow and the PV production from latent heating. However, explosive cyclones are also subject to hindrances from vertical and meridional PV advections. Quantitatively, the sum of thermodynamic contributions by the latent heating, vertical PV advection, and surface temperature tendency is about 1.6 times more important than the dynamical PV redistribution by horizontal advections on the explosive cyclone intensification. This result confirms the dominant role of thermodynamic processes in explosive cyclone development over the northwest Pacific. It turns out from further analysis that the interactions of lower-level anomalous flows are important for thermodynamic processes, whereas the advections by the upper-level mean flow are primary for dynamic processes.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Seok-Woo Son, seokwooson@snu.ac.kr

Abstract

A novel method that quantitatively evaluates the development processes of extratropical cyclones is devised and applied to the explosive cyclones over the northwest Pacific in the cold season (October–April). By inverting the potential vorticity (PV) tendency equation, the contribution of dynamic and thermodynamic processes at different levels to explosive cyclone development is quantified. In terms of geostrophic vorticity tendency at 850 hPa, which is utilized to quantify cyclone development, the leading factors for the explosive cyclone intensification are upper-level PV advection by the mean zonal flow and the PV production from latent heating. However, explosive cyclones are also subject to hindrances from vertical and meridional PV advections. Quantitatively, the sum of thermodynamic contributions by the latent heating, vertical PV advection, and surface temperature tendency is about 1.6 times more important than the dynamical PV redistribution by horizontal advections on the explosive cyclone intensification. This result confirms the dominant role of thermodynamic processes in explosive cyclone development over the northwest Pacific. It turns out from further analysis that the interactions of lower-level anomalous flows are important for thermodynamic processes, whereas the advections by the upper-level mean flow are primary for dynamic processes.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Seok-Woo Son, seokwooson@snu.ac.kr
Save
  • Ahmadi-Givi, F., G. C. Craig, and R. S. Plant, 2004: The dynamics of a midlatitude cyclone with very strong latent-heat release. Quart. J. Roy. Meteor. Soc., 130, 295323, https://doi.org/10.1256/qj.02.226.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Attinger, R., E. Spreitzer, M. Boettcher, R. Forbes, H. Wernli, and H. Joos, 2019: Quantifying the role of individual diabatic processes for the formation of PV anomalies in a North Pacific cyclone. Quart. J. Roy. Meteor. Soc., 145, 24542476, https://doi.org/10.1002/qj.3573.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bosart, L. F., 1981: The Presidents’ Day snowstorm of 18–19 February 1979: A subsynoptic-scale event. Mon. Wea. Rev., 109, 15421566, https://doi.org/10.1175/1520-0493(1981)109<1542:TPDSOF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, F. P., 1966: Critical layer instability in baroclinic flows. Quart. J. Roy. Meteor. Soc., 92, 325334, https://doi.org/10.1002/qj.49709239302.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Büeler, D., and S. Pfahl, 2017: Potential vorticity diagnostics to quantify effects of latent heating in extratropical cyclones. Part I: Methodology. J. Atmos. Sci., 74, 35673590, https://doi.org/10.1175/JAS-D-17-0041.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Catto, J. L., and Coauthors, 2019: The future of midlatitude cyclones. Curr. Climate Change Rep., 5, 407420, https://doi.org/10.1007/s40641-019-00149-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charney, J. G., and M. E. Stern, 1962: On the stability of internal baroclinic jets in a rotating atmosphere. J. Atmos. Sci., 19, 159172, https://doi.org/10.1175/1520-0469(1962)019<0159:OTSOIB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S.-J., Y.-H. Kuo, P.-Z. Zhang, and Q.-F. Bai, 1992: Climatology of explosive cyclones off the East Asian coast. Mon. Wea. Rev., 120, 30293035, https://doi.org/10.1175/1520-0493(1992)120<3029:COECOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, C. A., 1992: Piecewise potential vorticity inversion. J. Atmos. Sci., 49, 13971411, https://doi.org/10.1175/1520-0469(1992)049<1397:PPVI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, C. A., and K. A. Emanuel, 1991: Potential vorticity diagnostics of cyclogenesis. Mon. Wea. Rev., 119, 19291953, https://doi.org/10.1175/1520-0493(1991)119<1929:PVDOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Efron, B., and R. J. Tibshirani, 1993: An Introduction to the Bootstrap. Chapman and Hall/CRC, 456 pp.

    • Crossref
    • Export Citation
  • Emanuel, K. A., M. Fantini, and A. J. Thorpe, 1987: Baroclinic instability in an environment of small stability to slantwise moist convection. Part I: Two-dimensional models. J. Atmos. Sci., 44, 15591573, https://doi.org/10.1175/1520-0469(1987)044<1559:BIIAEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ertel, H., 1942: Ein neuer hydrodynamischer Erhaltungssatz. Naturwissenschaften, 30, 543544, https://doi.org/10.1007/BF01475602.

  • Fink, A. H., S. Pohle, J. G. Pinto, and P. Knippertz, 2012: Diagnosing the influence of diabatic processes on the explosive deepening of extratropical cyclones. Geophys. Res. Lett., 39, L07803, https://doi.org/10.1029/2012GL051025.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gyakum, J. R., 1983: On the evolution of the QE II storm. Part I: Synoptic aspects. Mon. Wea. Rev., 111, 11371155, https://doi.org/10.1175/1520-0493(1983)111<1137:OTEOTI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hawcroft, M. K., L. C. Shaffrey, K. I. Hodges, and H. F. Dacre, 2012: How much Northern Hemisphere precipitation is associated with extratropical cyclones? Geophys. Res. Lett., 39, L24809, https://doi.org/10.1029/2012GL053866.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hirata, H., R. Kawamura, M. Kato, and T. Shinoda, 2015: Influential role of moisture supply from the Kuroshio/Kuroshio Extension in the rapid development of an extratropical cyclone. Mon. Wea. Rev., 143, 41264144, https://doi.org/10.1175/MWR-D-15-0016.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 2004: An Introduction to Dynamic Meteorology. 4th ed. Elsevier Academic Press, 535 pp.

  • Hoskins, B. J., M. E. McIntyre, and A. W. Robertson, 1985: On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc., 111, 877946, https://doi.org/10.1002/qj.49711147002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hwang, J., P. Martineau, S. Son, T. Miyasaka, and H. Nakamura, 2020: The role of transient eddies in North Pacific blocking formation and its seasonality. J. Atmos. Sci., 77, 24532470, https://doi.org/10.1175/JAS-D-20-0011.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iwao, K., M. Inatsu, and M. Kimoto, 2012: Recent changes in explosively developing extratropical cyclones over the winter northwestern Pacific. J. Climate, 25, 72827296, https://doi.org/10.1175/JCLI-D-11-00373.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, J. M., J. Lee, S.-W. Son, J. Kim, and D. Chen, 2020: The rapid intensification of East Asian cyclones around the Korean Peninsula and their surface impacts. J. Geophys. Res. Atmos., 125, e2019JD031632, https://doi.org/10.1029/2019JD031632.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klawa, M., and U. Ulbrich, 2003: A model for the estimation of storm losses and the identification of severe winter storms in Germany. Nat. Hazards Earth Syst. Sci., 3, 725732, https://doi.org/10.5194/nhess-3-725-2003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuo, Y.-H., R. J. Reed, and S. Low-Nam, 1991: Effects of surface energy fluxes during the early development and rapid intensification stages of seven explosive cyclones in the western Atlantic. Mon. Wea. Rev., 119, 457476, https://doi.org/10.1175/1520-0493(1991)119<0457:EOSEFD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, J., S.-W. Son, H.-O. Cho, J. Kim, D.-H. Cha, J. R. Gyakum, and D. Chen, 2019: Extratropical cyclones over East Asia: Climatology, seasonal cycle, and long-term trend. Climate Dyn., 54, 11311144, https://doi.org/10.1007/s00382-019-05048-w.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lupo, A. R., P. J. Smith, and P. Zwack, 1992: A diagnosis of the explosive development of two extratropical cyclones. Mon. Wea. Rev., 120, 14901523, https://doi.org/10.1175/1520-0493(1992)120<1490:ADOTED>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nielsen-Gammon, J. W., and R. J. Lefevre, 1996: Piecewise tendency diagnosis of dynamical processes governing the development of an upper-tropospheric mobile trough. J. Atmos. Sci., 53, 31203142, https://doi.org/10.1175/1520-0469(1996)053<3120:PTDODP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reader, M. C., and G. W. K. Moore, 1995: Stratosphere–troposphere interactions associated with a case of explosive cyclogenesis in the Labrador Sea. Tellus, 47A, 849863, https://doi.org/10.3402/tellusa.v47i5.11579.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roebber, P. J., 1984: Statistical analysis and updated climatology of explosive cyclones. Mon. Wea. Rev., 112, 15771589, https://doi.org/10.1175/1520-0493(1984)112<1577:SAAUCO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sanders, F., 1986: Explosive cyclogenesis in the west-central North Atlantic Ocean, 1981–84. Part I: Composite structure and mean behavior. Mon. Wea. Rev., 114, 17811794, https://doi.org/10.1175/1520-0493(1986)114<1781:ECITWC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sanders, F., and J. R. Gyakum, 1980: Synoptic-dynamic climatology of the “bomb.” Mon. Wea. Rev., 108, 15891606, https://doi.org/10.1175/1520-0493(1980)108<1589:SDCOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schäfer, S. A. K., and A. Voigt, 2018: Radiation weakens idealized midlatitude cyclones. Geophys. Res. Lett., 45, 28332841, https://doi.org/10.1002/2017GL076726.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seiler, C., 2019: A climatological assessment of intense extratropical cyclones from the potential vorticity perspective. J. Climate, 32, 23692380, https://doi.org/10.1175/JCLI-D-18-0461.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shaw, T. A., and Coauthors, 2016: Storm track processes and the opposing influences of climate change. Nat. Geosci., 9, 656664, https://doi.org/10.1038/ngeo2783.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sinclair, M. R., and M. J. Revell, 2000: Classification and composite diagnosis of extratropical cyclogenesis events in the southwest Pacific. Mon. Wea. Rev., 128, 10891105, https://doi.org/10.1175/1520-0493(2000)128<1089:CACDOE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sprenger, M., 2007: Numerical piecewise potential vorticity inversion: A user guide for real-case experiments. ETH Zurich Rep., 87 pp.

  • Sprenger, M., and Coauthors, 2017: Global climatologies of Eulerian and Lagrangian flow features based on ERA-Interim reanalyses. Bull. Amer. Meteor. Soc., 98, 17391748, https://doi.org/10.1175/BAMS-D-15-00299.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stoelinga, M. T., 1996: A potential vorticity-based study of the role of diabatic heating and friction in a numerically simulated baroclinic cyclone. Mon. Wea. Rev., 124, 849874, https://doi.org/10.1175/1520-0493(1996)124<0849:APVBSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tamarin, T., and Y. Kaspi, 2016: The poleward motion of extratropical cyclones from a potential vorticity tendency analysis. J. Atmos. Sci., 73, 16871707, https://doi.org/10.1175/JAS-D-15-0168.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uccellini, L. W., D. Keyser, K. F. Brill, and C. H. Wash, 1985: The Presidents’ Day cyclone of 18–19 February 1979: Influence of upstream trough amplification and associated tropopause folding on rapid cyclogenesis. Mon. Wea. Rev., 113, 962988, https://doi.org/10.1175/1520-0493(1985)113<0962:TPDCOF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, C.-C., and J. C. Rogers, 2001: A composite study of explosive cyclogenesis in different sectors of the North Atlantic. Part I: Cyclone structure and evolution. Mon. Wea. Rev., 129, 14811499, https://doi.org/10.1175/1520-0493(2001)129<1481:ACSOEC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wernli, H., and C. Schwierz, 2006: Surface cyclones in the ERA-40 dataset (1958–2001). Part I: Novel identification method and global climatology. J. Atmos. Sci., 63, 24862507, https://doi.org/10.1175/JAS3766.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wernli, H., S. Dirren, M. A. Liniger, and M. Zillig, 2002: Dynamical aspects of the life cycle of the winter storm “Lothar” (24–26 December 1999). Quart. J. Roy. Meteor. Soc., 128, 405429, https://doi.org/10.1256/003590002321042036.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yoshida, A., and Y. Asuma, 2004: Structures and environment of explosively developing extratropical cyclones in the northwestern Pacific region. Mon. Wea. Rev., 132, 11211142, https://doi.org/10.1175/1520-0493(2004)132<1121:SAEOED>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, S., G. Fu, C. Lu, and Z. Liu, 2017: Characteristics of explosive cyclones over the northern Pacific. J. Appl. Meteor. Climatol., 56, 31873210, https://doi.org/10.1175/JAMC-D-16-0330.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zwack, P., and B. Okossi, 1986: A new method for solving the quasigeostrophic omega equation by incorporating surface pressure tendency data. Mon. Wea. Rev., 114, 655666, https://doi.org/10.1175/1520-0493(1986)114<0655:ANMFST>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 304 0 0
Full Text Views 586 293 27
PDF Downloads 550 212 23