• Adames, Á. F., and D. Kim, 2016: The MJO as a dispersive, convectively coupled moisture wave: Theory and observations. J. Atmos. Sci., 73, 913941, https://doi.org/10.1175/JAS-D-15-0170.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adames, Á. F., J. M. Wallace, and J. M. Monteiro, 2016: Seasonality of the structure and propagation characteristics of the MJO. J. Atmos. Sci., 73, 35113526, https://doi.org/10.1175/JAS-D-15-0232.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ahn, M. S., D. Kim, K. R. Sperber, I. S. Kang, E. Maloney, D. Waliser, and H. Hendon, 2017: MJO simulation in CMIP5 climate models: MJO skill metrics and process-oriented diagnosis. Climate Dyn., 49, 40234045, https://doi.org/10.1007/s00382-017-3558-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andersen, J. A., and Z. Kuang, 2012: Moist static energy budget of MJO-like disturbances in the atmosphere of a zonally symmetric aquaplanet. J. Climate, 25, 27822804, https://doi.org/10.1175/JCLI-D-11-00168.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bellenger, H., K. Yoneyama, M. Katsumata, T. Nishizawa, K. Yasunaga, and R. Shirooka, 2015: Observation of moisture tendencies related to shallow convection. J. Atmos. Sci., 72, 641659, https://doi.org/10.1175/JAS-D-14-0042.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benedict, J. J., and D. A. Randall, 2007: Observed characteristics of the MJO relative to maximum rainfall. J. Atmos. Sci., 64, 23322354, https://doi.org/10.1175/JAS3968.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bladé, I., and D. L. Hartmann, 1993: Tropical intraseasonal oscillations in a simple nonlinear model. J. Atmos. Sci., 50, 29222939, https://doi.org/10.1175/1520-0469(1993)050<2922:TIOIAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S. S., and R. A. Houze Jr., 1997: Diurnal variation and life cycle of deep convective systems over the tropical Pacific warm pool. Quart. J. Roy. Meteor. Soc., 123, 357388, https://doi.org/10.1002/qj.49712353806.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chikira, M., 2014: Eastward-propagating intraseasonal oscillation represented by Chikira–Sugiyama cumulus parameterization. Part II: Understanding moisture variation under weak temperature gradient balance. J. Atmos. Sci., 71, 615639, https://doi.org/10.1175/JAS-D-13-038.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Churchill, D. D., and R. A. Houze Jr., 1984: Development and structure of winter monsoon cloud clusters on 10 December 1978. J. Atmos. Sci., 41, 933960, https://doi.org/10.1175/1520-0469(1984)041<0933:DASOWM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMott, C. A., C. Stan, and D. A. Randall, 2013: Northward propagation mechanisms of the boreal summer intraseasonal oscillation in the ERA-Interim and SP-CCSM. J. Climate, 26, 19731992, https://doi.org/10.1175/JCLI-D-12-00191.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMott, C. A., N. P. Klingaman, and S. J. Woolnough, 2015: Atmosphere-ocean coupled processes in the Madden-Julian oscillation. Rev. Geophys., 53, 10991154, https://doi.org/10.1002/2014RG000478.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fabry, F., I. Zawadzki, and S. Cohn, 1993: The influence of stratiform precipitation on shallow convective rain: A case study. Mon. Wea. Rev., 121, 33123325, https://doi.org/10.1175/1520-0493(1993)121<3312:TIOSPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Funk, A., C. Schumacher, and J. Awaka, 2013: Analysis of rain classifications over the tropics by version 7 of the TRMM PR 2A23 algorithm. J. Meteor. Soc. Japan, 91, 257272, https://doi.org/10.2151/jmsj.2013-302.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462, https://doi.org/10.1002/qj.49710644905.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haertel, P. T., G. N. Kiladis, A. Denno, and T. M. Rickenbach, 2008: Vertical-mode decompositions of 2-day waves and the Madden–Julian oscillation. J. Atmos. Sci., 65, 813833, https://doi.org/10.1175/2007JAS2314.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hagos, S., Z. Feng, K. Landu, and C. N. Long, 2014: Advection, moistening, and shallow-to-deep convection transitions during the initiation and propagation of Madden-Julian oscillation. J. Adv. Model. Earth Syst., 6, 938949, https://doi.org/10.1002/2014MS000335.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hagos, S., and et al. , 2016: The impact of the diurnal cycle on the propagation of Madden-Julian oscillation convection across the Maritime Continent. J. Adv. Model. Earth Syst., 8, 15521564, https://doi.org/10.1002/2016MS000725.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Handlos, Z. J., and L. E. Back, 2014: Estimating vertical motion profile shape within tropical weather states over the oceans. J. Climate, 27, 76677686, https://doi.org/10.1175/JCLI-D-13-00602.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., and M. L. Salby, 1994: The life cycle of the Madden–Julian oscillation. J. Atmos. Sci., 51, 22252237, https://doi.org/10.1175/1520-0469(1994)051<2225:TLCOTM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and et al. , 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

  • Hohenegger, C., and B. Stevens, 2013: Preconditioning deep convection with cumulus congestus. J. Atmos. Sci., 70, 448464, https://doi.org/10.1175/JAS-D-12-089.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., 1997: Stratiform precipitation in regions of convection: A meteorological paradox? Bull. Amer. Meteor. Soc., 78, 21792196, https://doi.org/10.1175/1520-0477(1997)078<2179:SPIROC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsu, P. C., and T. Li, 2012: Role of the boundary layer moisture asymmetry in causing the eastward propagation of the Madden–Julian oscillation. J. Climate, 25, 49144931, https://doi.org/10.1175/JCLI-D-11-00310.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, Q., and D. A. Randall, 1994: Low-frequency oscillations in radiative–convective systems. J. Atmos. Sci., 51, 10891099, https://doi.org/10.1175/1520-0469(1994)051<1089:LFOIRC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hung, C. S., and C. H. Sui, 2018: A diagnostic study of the evolution of the MJO from Indian Ocean to Maritime Continent: Wave dynamics versus advective moistening processes. J. Climate, 31, 40954115, https://doi.org/10.1175/JCLI-D-17-0139.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Inoue, K., Á. F. Adames, and K. Yasunaga, 2020: Vertical velocity profiles in convectively coupled equatorial waves and MJO: New diagnoses of vertical velocity profiles in the wavenumber–frequency domain. J. Atmos. Sci., 77, 21392162, https://doi.org/10.1175/JAS-D-19-0209.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janiga, M. A., and C. Zhang, 2016: MJO moisture budget during DYNAMO in a cloud-resolving model. J. Atmos. Sci., 73, 22572278, https://doi.org/10.1175/JAS-D-14-0379.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, X., 2017: Key processes for the eastward propagation of the Madden-Julian oscillation based on multimodal simulations. J. Geophys. Res. Atmos., 122, 755770, https://doi.org/10.1002/2016JD025955.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, X., T. Li, and B. Wang, 2004: Structures and mechanisms of the northward propagating boreal summer intraseasonal oscillation. J. Climate, 17, 10221039, https://doi.org/10.1175/1520-0442(2004)017<1022:SAMOTN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, X., and et al. , 2015: Vertical structure and physical processes of the Madden-Julian oscillation: Exploring key model physics in climate simulations. J. Geophys. Res. Atmos., 120, 47184748, https://doi.org/10.1002/2014JD022375.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, X., Á. F. Adames, M. Zhao, D. Waliser, and E. Maloney, 2018: A unified moisture mode framework for seasonality of the Madden–Julian oscillation. J. Climate, 31, 42154224, https://doi.org/10.1175/JCLI-D-17-0671.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, X., and et al. , 2020: Fifty years of research on the Madden-Julian oscillation: Recent progress, challenges, and perspectives. J. Geophys. Res. Atmos., 125, e2019JD030911, https://doi.org/10.1029/2019JD030911.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., and P. E. Ciesielski, 2013: Structure and properties of Madden–Julian oscillations deduced from DYNAMO sounding arrays. J. Atmos. Sci., 70, 31573179, https://doi.org/10.1175/JAS-D-13-065.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., T. M. Rickenbach, S. A. Rutledge, P. E. Ciesielski, and W. H. Schubert, 1999: Trimodal characteristics of tropical convection. J. Climate, 12, 23972418, https://doi.org/10.1175/1520-0442(1999)012<2397:TCOTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joyce, R. J., J. E. Janowiak, P. A. Arkin, and P. Xie, 2004: CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrol., 5, 487503, https://doi.org/10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kemball-Cook, S. R., and B. C. Weare, 2001: The onset of convection in the Madden–Julian oscillation. J. Climate, 14, 780793, https://doi.org/10.1175/1520-0442(2001)014<0780:TOOCIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kikuchi, K., B. Wang, and Y. Kajikawa, 2012: Bimodal representation of the tropical intraseasonal oscillation. Climate Dyn., 38, 19892000, https://doi.org/10.1007/s00382-011-1159-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., K. H. Straub, and P. T. Haertel, 2005: Zonal and vertical structure of the Madden–Julian oscillation. J. Atmos. Sci., 62, 27902809, https://doi.org/10.1175/JAS3520.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., M. C. Wheeler, P. T. Haertel, K. H. Straub, and P. E. Roundy, 2009: Convectively coupled equatorial waves. Rev. Geophys., 47, RG2003, https://doi.org/10.1029/2008RG000266.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., J. Dias, K. H. Straub, M. C. Wheeler, S. N. Tulich, K. Kikuchi, K. M. Weickmann, and M. J. Ventrice, 2014: A comparison of OLR and circulation-based indices for tracking the MJO. Mon. Wea. Rev., 142, 16971715, https://doi.org/10.1175/MWR-D-13-00301.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, D., M. S. Ahn, I. S. Kang, and A. D. Del Genio, 2015: Role of longwave cloud–radiation feedback in the simulation of the Madden–Julian oscillation. J. Climate, 28, 69796994, https://doi.org/10.1175/JCLI-D-14-00767.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., and D. Subramanian, 1982: The 30-50 day mode at 850 mb during MONEX. J. Atmos. Sci., 39, 20882095, https://doi.org/10.1175/1520-0469(1982)039<2088:TDMAMD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuang, Z., 2008: A moisture-stratiform instability for convectively coupled waves. J. Atmos. Sci., 65, 834854, https://doi.org/10.1175/2007JAS2444.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kubota, H., K. Yoneyama, J. I. Hamada, P. Wu, A. Sudaryanto, and I. B. Wahyono, 2015: Role of Maritime Continent convection during the preconditioning stage of the Madden-Julian oscillation observed in CINDY2011/DYNAMO. J. Meteor. Soc. Japan, 93A, 101114, https://doi.org/10.2151/JMSJ.2015-050.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, V. V., C. Jako, A. Protat, P. T. May, and L. Davies, 2013: The four cumulus cloud modes and their progression during rainfall events: AC-band polarimetric radar perspective. J. Geophys. Res. Atmos., 118, 83758389, https://doi.org/10.1002/jgrd.50640.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, W. K. M., and D. E. Waliser, 2012: Intraseasonal Variability in the Atmosphere-Ocean Climate System. Springer Science and Business Media, 437 pp.

    • Crossref
    • Export Citation
  • Lee, M.-I., I.-S. Kang, J.-K. Kim, and B. E. Mapes, 2001: Influence of cloud-radiation interaction on simulating tropical intraseasonal oscillation with an atmospheric general circulation model. J. Geophys. Res., 106, 14 21914 233, https://doi.org/10.1029/2001JD900143.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, T., and C. Zhou, 2009: Planetary scale selection of the Madden–Julian oscillation. J. Atmos. Sci., 66, 24292443, https://doi.org/10.1175/2009JAS2968.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liebmann, B., and C. A. Smith, 1996: Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc., 77, 12751277, https://doi.org/10.1175/1520-0477-77.6.1274.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1971: Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702708, https://doi.org/10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1972: Description of global-scale circulation cells in the tropics with a 40–50 day period. J. Atmos. Sci., 29, 11091123, https://doi.org/10.1175/1520-0469(1972)029<1109:DOGSCC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., 2009: The moist static energy budget of a composite tropical intraseasonal oscillation in a climate model. J. Climate, 22, 711729, https://doi.org/10.1175/2008JCLI2542.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., 2000: Convective inhibition, subgrid-scale triggering energy, and stratiform instability in a toy tropical wave model. J. Atmos. Sci., 57, 15151535, https://doi.org/10.1175/1520-0469(2000)057<1515:CISSTE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., S. Tulich, J. Lin, and P. Zuidema, 2006: The mesoscale convection life cycle: Building block or prototype for large-scale tropical waves? Dyn. Atmos. Oceans, 42, 329, https://doi.org/10.1016/j.dynatmoce.2006.03.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matthews, A. J., 2008: Primary and successive events in the Madden–Julian oscillation. Quart. J. Roy. Meteor. Soc., 134, 439453, https://doi.org/10.1002/qj.224.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mei, S., T. Li, and W. Chen, 2015: Three-type MJO initiation processes over the western equatorial Indian Ocean. Adv. Atmos. Sci., 32, 12081216, https://doi.org/10.1007/s00376-015-4201-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nasuno, T., T. Li, and K. Kikuchi, 2015: Moistening processes before the convective initiation of Madden–Julian oscillation events during the CINDY2011/DYNAMO period. Mon. Wea. Rev., 143, 622643, https://doi.org/10.1175/MWR-D-14-00132.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neena, J. M., J. Y. Lee, D. Waliser, B. Wang, and X. Jiang, 2014: Predictability of the Madden–Julian oscillation in the Intraseasonal Variability Hindcast Experiment (ISVHE). J. Climate, 27, 45314543, https://doi.org/10.1175/JCLI-D-13-00624.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parker, M. D., and R. H. Johnson, 2004: Structures and dynamics of quasi-2D mesoscale convective systems. J. Atmos. Sci., 61, 545567, https://doi.org/10.1175/1520-0469(2004)061<0545:SADOQM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Powell, S. W., and R. A. Houze Jr., 2013: The cloud population and onset of the Madden-Julian oscillation over the Indian Ocean during DYNAMO-AMIE. J. Geophys. Res. Atmos., 118, 11 97911 995, https://doi.org/10.1002/2013JD020421.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Powell, S. W., and R. A. Houze Jr., 2015: Effect of dry large-scale vertical motions on initial MJO convective onset. J. Geophys. Res. Atmos., 120, 47834805, https://doi.org/10.1002/2014JD022961.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., and et al. , 2007: Daily high-resolution-blended analyses for sea surface temperature. J. Climate, 20, 54735496, https://doi.org/10.1175/2007JCLI1824.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ricko, M., R. F. Adler, and G. J. Huffman, 2016: Climatology and interannual variability of quasi-global intense precipitation using satellite observations. J. Climate, 29, 54475468, https://doi.org/10.1175/JCLI-D-15-0662.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roundy, P. E., C. J. Schreck III, and M. A. Janiga, 2009: Contributions of convectively coupled equatorial Rossby waves and Kelvin waves to the real-time multivariate MJO indices. Mon. Wea. Rev., 137, 469478, https://doi.org/10.1175/2008MWR2595.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rowe, A. K., and R. A. Houze, 2014: Microphysical characteristics of MJO convection over the Indian Ocean during DYNAMO. J. Geophys. Res. Atmos., 119, 25432554, https://doi.org/10.1002/2013JD020799.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruppert, J. H., Jr., and F. Zhang, 2019: Diurnal forcing and phase locking of gravity waves in the Maritime Continent. J. Atmos. Sci., 76, 28152835, https://doi.org/10.1175/JAS-D-19-0061.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruppert, J. H., Jr., X. Chen, and F. Zhang, 2020: Convectively forced diurnal gravity waves in the Maritime Continent. J. Atmos. Sci., 77, 11191136, https://doi.org/10.1175/JAS-D-19-0236.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sabeerali, C. T., A. Ramu Dandi, A. Dhakat, K. Salunke, S. Mahapatra, and S. A. Rao, 2013: Simulation of boreal summer intraseasonal oscillations in the latest CMIP5 coupled GCMs. J. Geophys. Res. Atmos., 118, 44014420, https://doi.org/10.1002/jgrd.50403.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schumacher, C., R. A. Houze Jr., and I. Kraucunas, 2004: The tropical dynamical response to latent heating estimates derived from the TRMM Precipitation Radar. J. Atmos. Sci., 61, 13411358, https://doi.org/10.1175/1520-0469(2004)061<1341:TTDRTL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schumacher, C., M. H. Zhang, and P. E. Ciesielski, 2007: Heating structures of the TRMM field campaigns. J. Atmos. Sci., 64, 25932610, https://doi.org/10.1175/JAS3938.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seo, K. H. and K. Y. Kim, 2003: Propagation and initiation mechanisms of the Madden-Julian oscillation. J. Geophys. Res., 108, 4384, https://doi.org/10.1029/2002JD002876.

    • Search Google Scholar
    • Export Citation
  • Shige, S., Y. N. Takayabu, W. K. Tao, and D. E. Johnson, 2004: Spectral retrieval of latent heating profiles from TRMM PR data. Part I: Development of a model-based algorithm. J. Appl. Meteor., 43, 10951113, https://doi.org/10.1175/1520-0450(2004)043<1095:SROLHP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and et al. , 2019: A description of the Advanced Research WRF Model version 4. NCAR Tech. Note NCAR/TN-556+STR, 145 pp., https://doi.org/10.5065/1dfh-6p97.

    • Crossref
    • Export Citation
  • Sobel, A. H., J. Nilsson, and L. M. Polvani, 2001: The weak temperature gradient approximation and balanced tropical moisture waves. J. Atmos. Sci., 58, 36503665, https://doi.org/10.1175/1520-0469(2001)058<3650:TWTGAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., S. Waang, and D. Kim, 2014: Moist static energy budget of the MJO during DYNAMO. J. Atmos. Sci., 71, 42764291, https://doi.org/10.1175/JAS-D-14-0052.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Storm, B. A., M. D. Parker, and D. P. Jorgensen, 2007: A convective line with leading stratiform precipitation from BAMEX. Mon. Wea. Rev., 135, 17691785, https://doi.org/10.1175/MWR3392.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Straub, K. H., 2013: MJO initiation in the real-time multivariate MJO index. J. Climate, 26, 11301151, https://doi.org/10.1175/JCLI-D-12-00074.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tao, W. K., and et al. , 1993: Heating, moisture, and water budgets of tropical and midlatitude squall lines: Comparisons and sensitivity to longwave radiation. J. Atmos. Sci., 50, 673690, https://doi.org/10.1175/1520-0469(1993)050<0673:HMAWBO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tulich, S. N., and G. N. Kiladis, 2012: Squall lines and convectively coupled gravity waves in the tropics: Why do most cloud systems propagate westward? J. Atmos. Sci., 69, 29953012, https://doi.org/10.1175/JAS-D-11-0297.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vincent, C. L., and T. P. Lane, 2016: Evolution of the diurnal precipitation cycle with the passage of a Madden–Julian oscillation event through the Maritime Continent. Mon. Wea. Rev., 144, 19832005, https://doi.org/10.1175/MWR-D-15-0326.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vincent, C. L., and T. P. Lane, 2018: Mesoscale variation in diabatic heating around Sumatra, and its modulation with the Madden–Julian oscillation. Mon. Wea. Rev., 146, 25992614, https://doi.org/10.1175/MWR-D-17-0392.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., and X. Xie, 1997: A model for the boreal summer intraseasonal oscillation. J. Atmos. Sci., 54, 7286, https://doi.org/10.1175/1520-0469(1997)054<0072:AMFTBS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, S., A. H. Sobel, and Z. Kuang, 2013: Cloud-resolving simulation of TOGA-COARE using parameterized large-scale dynamics. J. Geophys. Res. Atmos., 118, 62906301, https://doi.org/10.1002/jgrd.50510.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, S., A. H. Sobel, and J. Nie, 2016: Modeling the MJO in a cloud-resolving model with parameterized large-scale dynamics: Vertical structure, radiation, and horizontal advection of dry air. J. Adv. Model. Earth Syst., 8, 121139, https://doi.org/10.1002/2015MS000529.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, S., D. Ma, A. H. Sobel, and M. K. Tippett, 2018: Propagation characteristics of BSISO indices. Geophys. Res. Lett., 45, 99349943, https://doi.org/10.1029/2018GL078321.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, S., A. H. Sobel, M. K. Tippett, and F. Vitart, 2019: Prediction and predictability of tropical intraseasonal convection: Seasonal dependence and the Maritime Continent prediction barrier. Climate Dyn., 52, 60156031, https://doi.org/10.1007/s00382-018-4492-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wei, Y., F. Liu, M. Mu, and H. L. Ren, 2018: Planetary scale selection of the Madden–Julian oscillation in an air-sea coupled dynamic moisture model. Climate Dyn., 50, 34413456, https://doi.org/10.1007/s00382-017-3816-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wei, Y., M. Mu, H.-L. Ren, and J.-X. Fu, 2019a: Conditional nonlinear optimal perturbations of moisture triggering primary MJO initiation. Geophys. Res. Lett., 46, 34923501, https://doi.org/10.1029/2018GL081755.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wei, Y., F. Liu, M. Mu, and H. L. Ren, 2019b: Modulation of ENSO on fast and slow MJO modes during boreal winter. J. Climate, 32, 74837506, https://doi.org/10.1175/JCLI-D-19-0013.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wei, Y., F. Liu, M. Mu, and H. L. Ren, 2020a: Nonlinear optimal moisture perturbations as excitation of primary MJO events in a hybrid coupled climate model. Climate Dyn., 54, 675699, https://doi.org/10.1007/s00382-019-05021-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wei, Y., Z. Pu, and C. Zhang, 2020b: Diurnal cycle of precipitation over the Maritime Continent under modulation of MJO: Perspectives from a cloud-permitting simulation. J. Geophys. Res. Atmos., 125, e2020JD032529, https://doi.org/10.1029/2020JD032529.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheeler, M., and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 19171932, https://doi.org/10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, W., and S. A. Rutledge, 2014: Convective characteristics of the Madden–Julian oscillation over the central Indian Ocean observed by shipborne radar during DYNAMO. J. Atmos. Sci., 71, 28592877, https://doi.org/10.1175/JAS-D-13-0372.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, W., and S. A. Rutledge, 2016: Time scales of shallow-to-deep convective transition associated with the onset of Madden-Julian oscillations. Geophys. Res. Lett., 43, 28802888, https://doi.org/10.1002/2016GL068269.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yanai, M., S. Esbensen, and J. H. Chu, 1973: Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J. Atmos. Sci., 30, 611627, https://doi.org/10.1175/1520-0469(1973)030<0611:DOBPOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, Y. M., J. Y. Lee, and B. Wang, 2020: Dominant process for northward propagation of boreal summer intraseasonal oscillation over the western North Pacific. Geophys. Res. Lett., 47, e2020GL089808, https://doi.org/10.1029/2020GL089808.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yano, J. I., and M. Bonazzola, 2009: Scale analysis for large-scale tropical atmospheric dynamics. J. Atmos. Sci., 66, 159172, https://doi.org/10.1175/2008JAS2687.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yasunari, T., 1979: Cloudiness fluctuations associated with the Northern Hemisphere summer monsoon. J. Meteor. Soc. Japan, 57, 227242, https://doi.org/10.2151/jmsj1965.57.3_227.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yokoi, S., and A. H. Sobel, 2015: Intraseasonal variability and seasonal march of the moist static energy budget over the eastern Maritime Continent during CINDY2011/DYNAMO. J. Meteor. Soc. Japan, 93A, 81100, https://doi.org/10.2151/jmsj.2015-041.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zermeño-Díaz, D. M., C. Zhang, P. Kollias, and H. Kalesse, 2015: The role of shallow cloud moistening in MJO and non-MJO convective events over the ARM Manus site. J. Atmos. Sci., 72, 47974820, https://doi.org/10.1175/JAS-D-14-0322.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, C., 2005: Madden-Julian oscillation. Rev. Geophys., 43, RG2003, https://doi.org/10.1029/2004RG000158.

  • Zhang, C., 2013: Madden–Julian oscillation: Bridging weather and climate. Bull. Amer. Meteor. Soc., 94, 18491870, https://doi.org/10.1175/BAMS-D-12-00026.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, C., and S. M. Hagos, 2009: Bi-modal structure and variability of large-scale diabatic heating in the tropics. J. Atmos. Sci., 66, 36213640, https://doi.org/10.1175/2009JAS3089.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, C., and J. Ling, 2017: Barrier effect of the Indo-Pacific Maritime Continent on the MJO: Perspectives from tracking MJO precipitation. J. Climate, 30, 34393459, https://doi.org/10.1175/JCLI-D-16-0614.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, C., and K. Yoneyama, 2017: CINDY/DYNAMO field campaign: Advancing our understanding of MJO initiation. The Global Monsoon System: Research and Forecast, World Scientific, 339–348.

    • Crossref
    • Export Citation
  • Zhang, C., A. F. Adames, B. Khouider, B. Wang, and D. Yang, 2020: Four theories of the Madden-Julian oscillation. Rev. Geophys., 58, e2019RG000685, https://doi.org/10.1029/2019RG000685.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 147 147 27
Full Text Views 61 61 19
PDF Downloads 78 78 14

Moisture Variation with Cloud Effects during a BSISO over the Eastern Maritime Continent in a Cloud-Permitting-Scale Simulation

View More View Less
  • 1 a Department of Atmospheric Sciences, University of Utah, Salt Lake City, Utah
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Despite the great importance of interactions between moisture, clouds, radiation, and convection in the Madden–Julian oscillation, their role in the boreal summer intraseasonal oscillation (BSISO) has not been well established. This study investigates the moisture variation of a BSISO during its rapid redevelopment over the eastern Maritime Continent through a cloud-permitting-scale numerical simulation. It is found that moisture variation depends closely on the evolution of clouds and precipitation. Total moisture budget analysis reveals that the deepening and strengthening (lessening) of humidity before (after) the BSISO deep convection are attributed largely to zonal advection. In addition, the column moistening/drying is mostly in phase with the humidity and is related to the maintenance of BSISO. An objective cloud-type classification method and a weak temperature gradient approximation are used to further understand the column moistening/drying. Results indicate that elevated stratiform clouds play a significant role in moistening the lower troposphere through cloud water evaporation. Decreases in deep convection condensation and reevaporation of deep stratiform precipitation induce moistening during the development and after the decay of BSISO deep convection, respectively. Meanwhile, anomalous longwave radiative heating appears first in the lower troposphere during the developing stage of BSISO, further strengthens via the increase of deep stratiform clouds, and eventually deepens with elevated stratiform clouds. Accordingly, anomalous moistening largely in phase with the humidity of BSISO toward its suppressed stage is induced via compensated ascent. Owing to the anomalous decrease in the ratio of vertical moisture and potential temperature gradients, the cloud–radiation effect is further enhanced in the convective phase of BSISO.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Zhaoxia Pu, zhaoxia.pu@utah.edu

This article is included in the YMC: Years of the Maritime Continent Special Collection.

Abstract

Despite the great importance of interactions between moisture, clouds, radiation, and convection in the Madden–Julian oscillation, their role in the boreal summer intraseasonal oscillation (BSISO) has not been well established. This study investigates the moisture variation of a BSISO during its rapid redevelopment over the eastern Maritime Continent through a cloud-permitting-scale numerical simulation. It is found that moisture variation depends closely on the evolution of clouds and precipitation. Total moisture budget analysis reveals that the deepening and strengthening (lessening) of humidity before (after) the BSISO deep convection are attributed largely to zonal advection. In addition, the column moistening/drying is mostly in phase with the humidity and is related to the maintenance of BSISO. An objective cloud-type classification method and a weak temperature gradient approximation are used to further understand the column moistening/drying. Results indicate that elevated stratiform clouds play a significant role in moistening the lower troposphere through cloud water evaporation. Decreases in deep convection condensation and reevaporation of deep stratiform precipitation induce moistening during the development and after the decay of BSISO deep convection, respectively. Meanwhile, anomalous longwave radiative heating appears first in the lower troposphere during the developing stage of BSISO, further strengthens via the increase of deep stratiform clouds, and eventually deepens with elevated stratiform clouds. Accordingly, anomalous moistening largely in phase with the humidity of BSISO toward its suppressed stage is induced via compensated ascent. Owing to the anomalous decrease in the ratio of vertical moisture and potential temperature gradients, the cloud–radiation effect is further enhanced in the convective phase of BSISO.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Zhaoxia Pu, zhaoxia.pu@utah.edu

This article is included in the YMC: Years of the Maritime Continent Special Collection.

Save