Constraining Ice Water Content of Thin Antarctic Cirrus Clouds Using Ground-Based Lidar and Satellite Data

S. P. Alexander aAustralian Antarctic Division, Kingston, Tasmania, Australia
bAustralian Antarctic Programme Partnership, Institute for Marine and Antarctic Science, Hobart, Tasmania, Australia

Search for other papers by S. P. Alexander in
Current site
Google Scholar
PubMed
Close
and
A. R. Klekociuk aAustralian Antarctic Division, Kingston, Tasmania, Australia
bAustralian Antarctic Programme Partnership, Institute for Marine and Antarctic Science, Hobart, Tasmania, Australia

Search for other papers by A. R. Klekociuk in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

We combine observations of optically thin cirrus clouds made by lidar at Davis, Antarctica (69°S, 78°E), during 14–15 June 2011 with a microphysical retrieval algorithm to constrain the ice water content (IWC) of these clouds. The cirrus clouds were embedded in a tropopause jet that flowed around a ridge of high pressure extending southward over Davis from the Southern Ocean. Cloud optical depths were 0.082 ± 0.001, and subvisual cirrus were present during 11% of the observation period. The macrophysical cirrus cloud properties obtained during this case study are consistent with those previously reported at lower latitudes. MODIS satellite imagery and AIRS surface temperature data are used as inputs into a radiative transfer model in order to constrain the IWC and ice water path of the cirrus. The derived cloud IWC is consistent with in situ observations made at other locations but at similarly cold temperatures. The optical depths derived from the model agree with those calculated directly from the lidar data. This study demonstrates the value of a combination of ground-based lidar observations and a radiative transfer model in constraining microphysical cloud parameters that could be utilized at locations where other lidar measurements are made.

For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Simon Alexander, simon.alexander@aad.gov.au

Abstract

We combine observations of optically thin cirrus clouds made by lidar at Davis, Antarctica (69°S, 78°E), during 14–15 June 2011 with a microphysical retrieval algorithm to constrain the ice water content (IWC) of these clouds. The cirrus clouds were embedded in a tropopause jet that flowed around a ridge of high pressure extending southward over Davis from the Southern Ocean. Cloud optical depths were 0.082 ± 0.001, and subvisual cirrus were present during 11% of the observation period. The macrophysical cirrus cloud properties obtained during this case study are consistent with those previously reported at lower latitudes. MODIS satellite imagery and AIRS surface temperature data are used as inputs into a radiative transfer model in order to constrain the IWC and ice water path of the cirrus. The derived cloud IWC is consistent with in situ observations made at other locations but at similarly cold temperatures. The optical depths derived from the model agree with those calculated directly from the lidar data. This study demonstrates the value of a combination of ground-based lidar observations and a radiative transfer model in constraining microphysical cloud parameters that could be utilized at locations where other lidar measurements are made.

For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Simon Alexander, simon.alexander@aad.gov.au
Save
  • Ackerman, T. P., K. Liou, P. J. Valero, and L. Pfister, 1988: Heating rates in tropical anvils. J. Atmos. Sci., 45, 16061623, https://doi.org/10.1175/1520-0469(1988)045<1606:HRITA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alexander, S. P., and D. J. Murphy, 2015: The seasonal cycle of lower-tropospheric gravity wave activity at Davis, Antarctica (69°S, 78°E). J. Atmos. Sci., 72, 10101021, https://doi.org/10.1175/JAS-D-14-0171.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alexander, S. P., and A. Protat, 2018: Cloud properties observed from the surface and by satellite at the northern edge of the Southern Ocean. J. Geophys. Res. Atmos., 123, 443456, https://doi.org/10.1002/2017JD026552.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alexander, S. P., A. R. Klekociuk, and D. J. Murphy, 2011: Rayleigh lidar observations of gravity wave activity in the winter upper stratosphere and lower mesosphere above Davis, Antarctica (69°S, 78°E). J. Geophys. Res., 116, D13109, https://doi.org/10.1029/2010JD015164.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alexander, S. P., D. J. Murphy, and A. R. Klekociuk, 2013: High resolution VHF radar measurements of tropopause structure and variability at Davis, Antarctica (69°S, 78°E). Atmos. Chem. Phys., 13, 31213132, https://doi.org/10.5194/acp-13-3121-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alexander, S. P., A. Orr, S. Webster, and D. J. Murphy, 2017: Observations and fine-scale model simulations of gravity waves over Davis, East Antarctica (69s°S, 78°E). J. Geophys. Res. Atmos., 122, 73557370, https://doi.org/10.1002/2017JD026615.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Balmes, K. A., Q. Fu, and T. J. Thorsen, 2019: Differences in ice cloud optical depth from CALIPSO and ground-based Raman lidar at the ARM SGP and TWP sites. J. Geophys. Res. Atmos., 124, 17551778, https://doi.org/10.1029/2018JD028321.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Balsley, B. B., and D. A. Carter, 1982: The spectrum of atmospheric velocity fluctuations at 8 km and 86 km. Geophys. Res. Lett., 9, 465468, https://doi.org/10.1029/GL009i004p00465.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berk, A., L. S. Bernstein, G. Anderson, P. K. Acharya, D. C. Robertson, J. H. Chetwynd, and S. M. Alder-Goldern, 1998: MODTRAN cloud and multiple scattering upgrades with application to AVIRIS. Remote Sens. Environ., 65, 367375, https://doi.org/10.1016/S0034-4257(98)00045-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bouali, M., and S. Ladjal, 2011: Toward optimal destriping of MODIS data using a unidirectional variational model. IEEE Trans. Geosci. Remote Sens., 49, 29242935, https://doi.org/10.1109/TGRS.2011.2119399.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bouniol, D., and Coauthors, 2010: Using continuous ground-based radar and lidar measurements for evaluating and representation of clouds in four operational models. J. Appl. Meteor. Climatol., 49, 19711991, https://doi.org/10.1175/2010JAMC2333.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brabec, M., and Coauthors, 2012: Particle backscatter and relative humidity measured across cirrus clouds and comparison with microphysical cirrus modelling. Atmos. Chem. Phys., 12, 91359148, https://doi.org/10.5194/acp-12-9135-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bühl, J., A. Ansmann, P. Seifert, H. Baars, and R. Engelmann, 2013: Toward a quantitative characterization of heterogeneous ice formation with lidar/radar: Comparison of CALIPSO/CloudSat with ground-based observations. Geophys. Res. Lett., 40, 44044408, https://doi.org/10.1002/grl.50792.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cadet, B., L. Goldfarb, D. Faduihe, S. Baldy V. Giraud, P. Keckhut, and A. Réchou, 2003: A sub-tropical cirrus clouds climatology from Reunion Island (21°S, 55°E) lidar data set. Geophys. Res. Lett., 30, 1130, https://doi.org/10.1029/2002GL016342.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Campbell, J. R., S. Lolli, J. R. Lewise, Y. Gu, and E. J. Welton, 2016: Daytime cirrus cloud top-of-the-atmosphere radiative forcing properties at a midlatitude site and their global consequences. J. Appl. Meteor. Climatol., 55, 16671679, https://doi.org/10.1175/JAMC-D-15-0217.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Campbell, J. R., and Coauthors, 2018: Unusually deep wintertime cirrus clouds observed over the Alaskan subarctic. Bull. Amer. Meteor. Soc., 99, 2732, https://doi.org/10.1175/BAMS-D-17-0084.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiriaco, M., H. Chepfer, V. Noel, A. Delaval, M. Haeffelin, P. Dubuisson, and P. Yang, 2004: Improving retrievals of cirrus cloud particle size coupling lidar and three-channel radiometric techniques. Mon. Wea. Rev., 132, 16841700, https://doi.org/10.1175/1520-0493(2004)132<1684:IROCCP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Comstock, J. M., T. Ackerman, and G. G. Mace, 2002: Ground-based lidar and radar remote sensing of tropical cirrus clouds at Nauru Island: Cloud statistics and radiative impacts. J. Geophys. Res., 107, 4714, https://doi.org/10.1029/2002JD002203.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deeter, M. N., and K. F. Evans, 1998: A hybrid Eddington-single scattering radiative transfer model for computing radiances from thermally emitting atmosphere. J. Quant. Spectrosc. Radiat. Transfer, 60, 635648, https://doi.org/10.1016/S0022-4073(97)00245-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delanoë, J., and R. J. Hogan, 2010: Combined CloudSatCALIPSO–MODIS retrievals of the properties of ice clouds. J. Geophys. Res., 115, D00H29, https://doi.org/10.1029/2009JD012346.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dozier, J., and S. G. Warren, 1982: Effect of viewing angle on the infrared brightness temperature of snow. Water Resour. Res., 18, 14241434, https://doi.org/10.1029/WR018i005p01424.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dupont, J.-C., and Coauthors, 2010: Macrophysical and optical properties of midlatitude cirrus clouds from four ground-based lidars and collocated CALIOP observations. J. Geophys. Res., 115, D00H24, https://doi.org/10.1029/2009JD011943.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ebert, E. E., and J. A. Curry, 1992: A parameterization of ice cloud optical properties for climate models. J. Geophys. Res., 97, 38313836, https://doi.org/10.1029/91JD02472.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fernald, F., 1984: Analysis of atmospheric lidar observations: Some comments. Appl. Opt., 23, 652653, https://doi.org/10.1364/AO.23.000652.

  • Fu, Q., and K. N. Liou, 1993: Parameterization of the radiative properties of cirrus clouds. J. Atmos. Sci., 50, 20082025, https://doi.org/10.1175/1520-0469(1993)050<2008:POTRPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gage, K. S., and J. L. Green, 1979: Tropopause detection by partial specular reflection with very high frequency radar. Science, 203, 12381240, https://doi.org/10.1126/science.203.4386.1238.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goldfarb, L., P. Keckhut, M. L. Chanin, and A. Hauchecorne, 2001: Cirrus climatological results from lidar measurements at OHP (44°N, 6°E). Geophys. Res. Lett., 28, 16871690, https://doi.org/10.1029/2000GL012701.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., S. Matrosov, and B. Baum, 2003: Ice water path–optical depth relationships for cirrus and deep stratiform ice cloud layers. J. Appl. Meteor., 42, 13691390, https://doi.org/10.1175/1520-0450(2003)042<1369:IWPDRF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., C. Schmitt, and A. Bansemer, 2013: Ice cloud particle size distributions and pressure-dependent terminal velocities from in-situ observations at temperatures from 0° to −86°C. J. Atmos. Sci., 70, 41234154, https://doi.org/10.1175/JAS-D-12-0124.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., and Coauthors, 2017: Cirrus clouds. Ice Formation and Evolution in Clouds and Precipitation: Measurement and Modelling Challenges, Meteor. Monogr., No. 58, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-16-0010.1.

    • Crossref
    • Export Citation
  • Hoareau, C., P. Keckhut, V. Noel, H. Chepfer, and J. L. Baray, 2013: A decadal cirrus clouds climatology from ground-based and spaceborne lidars above the south of France (43.9°N–5.7°E). Atmos. Chem. Phys., 13, 69516963, https://doi.org/10.5194/acp-13-6951-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, Y., and Coauthors, 2009: CALIPSO/CALIOP cloud phase discrimination algorithm. J. Atmos. Oceanic Technol., 26, 22932309, https://doi.org/10.1175/2009JTECHA1280.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, Y., C. N. Franklin, S. T. Siems, M. J. Manton, T. Chubb, A. Lock, S. P. Alexander, and A. R. Klekociuk, 2015: Evaluation of boundary-layer cloud forecasts over the Southern Ocean in a limited-area numerical weather prediction system using in-situ, space-borne and ground-based observations. Quart. J. Roy. Meteor. Soc., 141, 22592276, https://doi.org/10.1002/qj.2519.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hudson, S. R., and R. E. Brandt, 2005: A look at the surface-based temperature inversion on the Antarctic Plateau. J. Climate, 18, 16731696, https://doi.org/10.1175/JCLI3360.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Illingworth, A. J., and Coauthors, 2007: Cloudnet: Continuous evaluation of cloud profiles in seven operational models using ground-based observations. Bull. Amer. Meteor. Soc., 88, 883898, https://doi.org/10.1175/BAMS-88-6-883.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Immler, F., and O. Schrems, 2002a: Determination of tropical cirrus properties by simultaneous lidar and radiosonde measurements. Geophys. Res. Lett., 29, 2090, https://doi.org/10.1029/2002GL015076.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Immler, F., and O. Schrems, 2002b: Lidar measurements of cirrus clouds in the northern and southern midlatitudes during INCA (55°N, 53°S): A comparative study. Geophys. Res. Lett., 29, 1809, https://doi.org/10.1029/2002GL015077.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Immler, F., K. Krüger, S. Tegtmeier, M. Fujiwara, P. Fortuin, G. Verver, and O. Schrems, 2007: Cirrus clouds, humidity and dehydration in the tropical tropopause layer observed at Paramaribo, Suriname (5.8°N, 55.2°W). J. Geophys. Res., 112, D03209, https://doi.org/10.1029/2006JD007440.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Innis, J. L., and A. R. Klekociuk, 2006: Planetary wave and gravity wave influence on the occurrence of polar stratospheric clouds over Davis Station, Antarctica, seen in lidar and radiosonde observations. J. Geophys. Res., 111, D22102, https://doi.org/10.1029/2006JD007629.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jensen, E. J., L. Pfister, and T. P. Bui, 2012: Physical processes controlling ice concentrations in cold cirrus near the tropical tropopause. J. Geophys. Res., 117, D11205, https://doi.org/10.1029/2011JD017319.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Josset, D., J. Pelon, A. Garnier, Y. Hu, M. Vaughan, P.-W. Zhai, R. Kuehn, and P. Lucker, 2012: Cirrus optical depth and lidar ratio retrieval from combined CALIPSOCloudSat observations using ocean surface echo. J. Geophys. Res., 117, D05207, https://doi.org/10.1029/2011JD016959.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaifler, N., G. Baumgarten, A. R. Klekociuk, S. P. Alexander, J. Fiedler, and F. J. Lübken, 2013: Small scale structures of NLC observed by lidar at 69°N/69°S and their possible relation to gravity waves. J. Atmos. Sol.-Terr. Phys., 104, 244252, https://doi.org/10.1016/j.jastp.2013.01.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kanitz, T., P. Seifert, A. Ansmann, R. Engelmann, D. Althausen, C. Casiccia, and E. G. Rohwer, 2011: Contrasting the impact of aerosols at northern and southern midlatitudes on heterogeneous ice formation. Geophys. Res. Lett., 38, L17802, https://doi.org/10.1029/2011GL048532.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kienast-Sjögren, E., C. Rolf, P. Seifert, U. K. Krieger, B. P. Luo, M. Krämer, and T. Peter, 2016: Climatological and radiative properties of midlatitude cirrus clouds derived by automatic evaluation of lidar measurements. Atmos. Chem. Phys., 16, 76057621, https://doi.org/10.5194/acp-16-7605-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, M. H., and Coauthors, 2018: The CALIPSO version 4 automated aerosol classification and lidar ratio selection algorithm. Atmos. Meas. Tech., 11, 61076135, https://doi.org/10.5194/amt-11-6107-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klekociuk, A. R., M. M. Lambert, R. A. Vincent, and A. J. Dowdy, 2003: First year of Rayleigh lidar measurements of middle atmosphere temperatures above Davis, Antarctica. Adv. Space Res., 32, 771776, https://doi.org/10.1016/S0273-1177(03)00421-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klekociuk, A. R., D. J. Ottaway, A. D. MacKinnon, I. M. Reid, L. V. Twigger, and S. P. Alexander, 2020: Australian lidar measurements of aerosol layers associated with the 2015 Calbuco eruption. Atmosphere, 11, 124, https://doi.org/10.3390/atmos11020124.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kox, S., L. Bugliaro, and A. Ostler, 2014: Retrieval of cirrus cloud optical thickness and top altitude from geostationary remote sensing. Atmos. Meas. Tech., 7, 32333246, https://doi.org/10.5194/amt-7-3233-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krämer, M., and Coauthors, 2016: A microphysics guide to cirrus clouds. Part I: Cirrus types. Atmos. Chem. Phys., 16, 34633483, https://doi.org/10.5194/acp-16-3463-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lolli, S., and Coauthors, 2017: Daytime top-of-the-atmosphere cirrus cloud radiative forcing properties at Singapore. J. Appl. Meteor. Climatol., 56, 12491257, https://doi.org/10.1175/JAMC-D-16-0262.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mace, G. G., Q. Zhang, M. Vaughn, R. Marchand, G. Stephens, C. Trepte, and D. Winker, 2009: A description of hydrometeor layer occurrence statistics derived from the first year of merged CloudSat and CALIPSO data. J. Geophys. Res., 114, D00A26, https://doi.org/10.1029/2007JD009755.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., A. J. Heymsfield, J. Spinhirne, and B. Hart, 2000: Thin and subvisual tropopause tropical cirrus: Observations and radiative impacts. J. Atmos. Sci., 57, 18411853, https://doi.org/10.1175/1520-0469(2000)057<1841:TASTTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mioche, G., and Coauthors, 2017: Vertical distribution of microphysical properties of Arctic springtime low-level mixed-phase clouds over the Greenland and Norwegian Seas. Atmos. Chem. Phys., 17, 12 84512 869, https://doi.org/10.5194/acp-17-12845-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Noël, V., and M. Haeffelin, 2007: Midlatitude cirrus clouds and multiple tropopauses from a 2002–2006 climatology over the SIRTA Observatory. J. Geophys. Res., 112, D13206, https://doi.org/10.1029/2006JD007753.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pan, L. L., and L. A. Munchak, 2011: Relationship of cloud top to the tropopause and jet structure from CALIPSO data. J. Geophys. Res., 116, D12201, https://doi.org/10.1029/2010JD015462.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parol, F., J. C. Buriez, G. Brogniez, and Y. Fouquart, 1991: Information content of AVHRR channels 4 and 5 with respect to the effective radius of cirrus cloud particles. J. Appl. Meteor., 30, 973984, https://doi.org/10.1175/1520-0450-30.7.973.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Platnick, S., and Coauthors, 2017: The MODIS cloud optical and microphysical products: Collection 6 updates and examples from Terra and Aqua. IEEE Trans. Geosci. Remote Sens., 55, 502525, https://doi.org/10.1109/TGRS.2016.2610522.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Plougonven, R., A. Hertzog, and M. J. Alexander, 2015: Case studies of non-orographic gravity waves over the Southern Ocean emphasize the role of moisture. J. Geophys. Res. Atmos., 120, 12781299, https://doi.org/10.1002/2014JD022332.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Randel, W. J., and F. Wu, 2010: The polar summer tropopause inversion layer. J. Atmos. Sci., 67, 25722581, https://doi.org/10.1175/2010JAS3430.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sasano, Y., E. V. Browell, and S. Ismail, 1985: Error caused by using a constant extinction/backscattering ratio in the lidar solution. Appl. Opt., 24, 39293932, https://doi.org/10.1364/AO.24.003929.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sassen, K., and J. R. Campbell, 2001: A midlatitude cirrus cloud climatology from the Facility for Atmospheric Remote Sensing. Part I: Macrophysical and synoptic properties. J. Atmos. Sci., 58, 481496, https://doi.org/10.1175/1520-0469(2001)058<0481:AMCCCF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sassen, K., and J. M. Comstock, 2001: A midlatitude cirrus cloud climatology from the Facility for Atmospheric Remote Sensing. Part III: Radiative properties. J. Atmos. Sci., 58, 21132127, https://doi.org/10.1175/1520-0469(2001)058<2113:AMCCCF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sassen, K., D. O. Starr, and T. Uttal, 1989: Mesoscale and microscale structure of cirrus clouds: Three case studies. J. Atmos. Sci., 46, 371396, https://doi.org/10.1175/1520-0469(1989)046<0371:MAMSOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sassen, K., Z. Wang, and D. Liu, 2008: Global distribution of cirrus clouds from CloudSat/Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) measurements. J. Geophys. Res., 113, D00A12, https://doi.org/10.1029/2008JD009972.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sassen, K., Z. Wang, and D. Liu, 2009: Cirrus clouds and deep convection in the tropics: Insights from CALIPSO and CloudSat. J. Geophys. Res., 114, D00H06, https://doi.org/10.1029/2009JD011916.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sato, K., H. Okamoto, T. Takemura, H. Kumagai, and N. Sugimoto, 2010: Characterization of ice cloud properties obtained by shipborne radar/lidar over the tropical western Pacific Ocean for evaluation of an atmospheric general circulation model. J. Geophys. Res., 115, D15203, https://doi.org/10.1029/2009JD012944.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shupe, M. D., 2007: A ground-based multisensor cloud phase classifier. Geophys. Res. Lett., 34, L22809, https://doi.org/10.1029/2007GL031008.

  • Stephens, G. L., 2002: Cirrus, climate, and global change. Cirrus, Oxford University Press, 433–448.

    • Crossref
    • Export Citation
  • Stubenrauch, C. J., A. Chedin, G. Rädel, N. A. Scott, and S. Serrar, 2006: Cloud properties and their seasonal and diurnal variability from TOVS Path-B. J. Climate, 19, 55315553, https://doi.org/10.1175/JCLI3929.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorsen, T. J., and Q. Fu, 2015: Automated retrieval of cloud and aerosol properties from the ARM Raman lidar. Part II: Extinction. J. Atmos. Oceanic Technol., 32, 19992023, https://doi.org/10.1175/JTECH-D-14-00178.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tian, L., G. M. Heymsfield, A. J. Heymsfield, A. Bensemer, L. Li, C. H. Twohy, and R. C. Srivastava, 2010: A study of cirrus ice particle size distribution using TC4 observations. J. Atmos. Sci., 67, 195216, https://doi.org/10.1175/2009JAS3114.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Verlinden, K. L., D. W. Thompson, and G. L. Stephens, 2011: The three-dimensional distribution of clouds over the Southern Hemisphere high latitudes. J. Climate, 24, 57995811, https://doi.org/10.1175/2011JCLI3922.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, J., L. Zhang, A. Dai, F. Immler, M. Sommer, and H. Vömel, 2013: Radiation dry bias correction of Väisälä RS92 humidity data and its impacts on historical radiosonde data. J. Atmos. Oceanic Technol., 30, 197214, https://doi.org/10.1175/JTECH-D-12-00113.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, L., and K. Sassen, 2008: Wavelet analysis of cirrus multiscale structures from lidar backscattering: A cirrus uncinus complex case study. J. Appl. Meteor. Climatol., 47, 26452658, https://doi.org/10.1175/2008JAMC1788.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Z., and K. Sassen, 2001: Cloud type and macrophysical property retrieval using multiple remote sensors. J. Appl. Meteor., 40, 16651682, https://doi.org/10.1175/1520-0450(2001)040<1665:CTAMPR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warren, S. G., and R. E. Brandt, 2008: Optical constants of ice from the ultraviolet to the microwave: A revised compilation. J. Geophys. Res., 113, D14220, https://doi.org/10.1029/2007JD009744.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilson, S. R., and B. W. Forgan, 2002: Aerosol optical depth at Cape Grim, Tasmania 1986–1999. J. Geophys. Res., 107, 4068, https://doi.org/10.1029/2001JD000398.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winker, D. M., W. H. Hunt, and M. J. McGill, 2007: Initial performance assessment of CALIOP. Geophys. Res. Lett., 34, L19803, https://doi.org/10.1029/2007GL030135.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wirth, V., 2000: Thermal versus dynamical tropopause in upper-tropospheric balanced flow anomalies. Quart. J. Roy. Meteor. Soc., 126, 299317, https://doi.org/10.1002/qj.49712656215.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • World Meteorological Organization, 1957: Meteorology—A three-dimensional science: Second session of the Commission for Aerology. WMO Bull., 4, 134138.

    • Search Google Scholar
    • Export Citation
  • Wylie, D., D. L. Jackson, W. P. Menzel, and J. J. Bates, 2005: Trends in global cloud cover in two decades of HIRS observations. J. Climate, 18, 30213031, https://doi.org/10.1175/JCLI3461.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, P., H. Wei, H. L. Huang, B. A. Baum, Y. X. Hu, G. W. Kattawar, M. I. Mishchenko, and Q. Fu, 2005: Scattering and absorption property database for nonspherical ice particles in the near- through far-infrared spectral region. Appl. Opt., 44, 55125523, https://doi.org/10.1364/AO.44.005512.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Young, S. A., M. A. Vaughan, A. Garnier, J. L. Tackett, J. D. Lambeth, and K. A. Powell, 2018: Extinction and optical depth retrievals for CALIPSO’s version 4 data release. Atmos. Meas. Tech., 11, 57015727, https://doi.org/10.5194/amt-11-5701-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 289 0 0
Full Text Views 443 122 17
PDF Downloads 303 101 8