Multistability and Rare Spontaneous Transitions in Barotropic β-Plane Turbulence

Eric Simonnet aINPHYNI, UMR 7010 CNRS, Université Côte d’Azur, Nice, France

Search for other papers by Eric Simonnet in
Current site
Google Scholar
PubMed
Close
,
Joran Rolland bUniv. Lyon, ENS de Lyon, Univ. Claude Bernard, CNRS, Laboratoire de Physique, Lyon, France

Search for other papers by Joran Rolland in
Current site
Google Scholar
PubMed
Close
, and
Freddy Bouchet bUniv. Lyon, ENS de Lyon, Univ. Claude Bernard, CNRS, Laboratoire de Physique, Lyon, France

Search for other papers by Freddy Bouchet in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

We demonstrate that turbulent zonal jets, analogous to Jovian ones, which are quasi stationary, are actually metastable. After extremely long times, they randomly switch to new configurations with a different number of jets. The genericity of this phenomenon suggests that most quasi-stationary turbulent planetary atmospheres might have many climates and attractors for fixed values of the external forcing parameters. A key message is that this situation will usually not be detected by simply running the numerical models, because of the extremely long mean transition time to change from one climate to another. To study such phenomena, we need to use specific tools: rare-event algorithms and large-deviation theory. With these tools, we make a full statistical mechanics study of a classical barotropic beta-plane quasigeostrophic model. It exhibits robust bimodality with abrupt transitions. We show that new jets spontaneously nucleate from westward jets. The numerically computed mean transition time is consistent with an Arrhenius law showing an exponential decrease of the probability as the Ekman dissipation decreases. This phenomenology is controlled by rare noise-driven paths called instantons. Moreover, we compute the saddles of the corresponding effective dynamics. For the dynamics of states with three alternating jets, we uncover an unexpectedly rich dynamics governed by the symmetric group S3 of permutations, with two distinct families of instantons, which is a surprise for a system where everything seemed stationary in the hundreds of previous simulations of this model. We discuss the future generalization of our approach to more realistic models.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Eric Simonnet, eric.simonnet@inphyni.cnrs.fr

Abstract

We demonstrate that turbulent zonal jets, analogous to Jovian ones, which are quasi stationary, are actually metastable. After extremely long times, they randomly switch to new configurations with a different number of jets. The genericity of this phenomenon suggests that most quasi-stationary turbulent planetary atmospheres might have many climates and attractors for fixed values of the external forcing parameters. A key message is that this situation will usually not be detected by simply running the numerical models, because of the extremely long mean transition time to change from one climate to another. To study such phenomena, we need to use specific tools: rare-event algorithms and large-deviation theory. With these tools, we make a full statistical mechanics study of a classical barotropic beta-plane quasigeostrophic model. It exhibits robust bimodality with abrupt transitions. We show that new jets spontaneously nucleate from westward jets. The numerically computed mean transition time is consistent with an Arrhenius law showing an exponential decrease of the probability as the Ekman dissipation decreases. This phenomenology is controlled by rare noise-driven paths called instantons. Moreover, we compute the saddles of the corresponding effective dynamics. For the dynamics of states with three alternating jets, we uncover an unexpectedly rich dynamics governed by the symmetric group S3 of permutations, with two distinct families of instantons, which is a surprise for a system where everything seemed stationary in the hundreds of previous simulations of this model. We discuss the future generalization of our approach to more realistic models.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Eric Simonnet, eric.simonnet@inphyni.cnrs.fr
Save
  • Arnold, N. P., E. Tziperman, and B. Farrell, 2012: Abrupt transition to strong superrotation driven by equatorial wave resonance in an idealized GCM. J. Atmos. Sci., 69, 626640, https://doi.org/10.1175/JAS-D-11-0136.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bakas, N., and P. Ioannou, 2014: A theory for the emergence of coherent structures in beta-plane turbulence. J. Fluid Mech., 740, 312341, https://doi.org/10.1017/jfm.2013.663.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berhanu, M., and Coauthors, 2007: Magnetic field reversals in an experimental turbulent dynamo. Eur. Phys. Lett., 77, 59001, https://doi.org/10.1209/0295-5075/77/59001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bouchet, F., 2020: Is the Boltzmann equation reversible? A large deviation perspective on the irreversibility paradox. J. Stat. Phys., 181, 515550, https://doi.org/10.1007/s10955-020-02588-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bouchet, F., and E. Simonnet, 2009: Random changes of flow topology in two-dimensional and geophysical turbulence. Phys. Rev. Lett., 102, 094504, https://doi.org/10.1103/PhysRevLett.102.094504.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bouchet, F., C. Nardini, and T. Tangarife, 2013: Kinetic theory of jet dynamics in the stochastic barotropic and 2D Navier-Stokes equations. J. Stat. Phys., 153, 572625, https://doi.org/10.1007/s10955-013-0828-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bouchet, F., J. Laurie, and O. Zaboronsky, 2014: Langevin dynamics, large deviations and instantons for the quasi-geostrophic model and two-dimensional Euler equation. J. Stat. Phys., 156, 10661092, https://doi.org/10.1007/s10955-014-1052-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bouchet, F., C. Nardini, and T. Tangarife, 2016: Non-equilibrium statistical mechanics of the stochastic Navier–Stokes equations and geostrophic turbulence. 5th Warsaw School of Statistical Physics, Kazimierz Dolny, Poland, Warsaw University, https://hal.archives-ouvertes.fr/hal-01143678/document.

  • Bouchet, F., J. Marston, and T. Tangarife, 2018: Fluctuations and large deviations of Reynolds stresses in zonal jet dynamics. Phys. Fluids, 30, 015110, https://doi.org/10.1063/1.4990509.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bouchet, F., J. Rolland, and E. Simonnet, 2019: Rare event algorithm links transitions in turbulent flows with activated nucleations. Phys. Rev. Lett., 122, 074502, https://doi.org/10.1103/PhysRevLett.122.074502.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bréhier, C. E., M. Gazeau, L. Goudenège, T. Lelièvre, and M. Rousset, 2016: Unbiasedness of some generalized adaptive multilevel splitting algorithms. Ann. Appl. Prob., 26, 35593601, https://doi.org/10.1214/16-AAP1185.

    • Search Google Scholar
    • Export Citation
  • Caballero, R., and M. Huber, 2010: Spontaneous transition to superrotation in warm climates simulated by CAM3. Geophys. Res. Lett., 37, L11701, https://doi.org/10.1029/2010GL043468.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cérou, F., and A. Guyader, 2007: Adaptive multilevel splitting for rare events analysis. Stochastic Anal. Appl., 25, 417443, https://doi.org/10.1080/07362990601139628.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cérou, F., and A. Guyader, 2016: Fluctuation analysis of adaptive multilevel splitting. Ann. Appl. Prob., 26, 33193380, https://doi.org/10.1214/16-AAP1177.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cérou, F., A. Guyader, T. Lelièvre, and D. Pommier, 2011: A multiple replica approach to simulate reactive trajectories. J. Chem. Phys., 134, 054108, https://doi.org/10.1063/1.3518708.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cérou, F., A. Guyader, and M. Rousset, 2019: Adaptive multilevel splitting: Historical perspective and recent results. Chaos, 29, 043108, https://doi.org/10.1063/1.5082247.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clerke, A. M., 1893: A Popular History of Astronomy during the Nineteenth Century. CreateSpace Independent Publishing Platform, 489 pp.

  • Constantinou, N. C., B. F. Farrell, and P. J. Ioannou, 2014: Emergence and equilibration of jets in beta-plane turbulence: Applications of stochastic structural stability theory. J. Atmos. Sci., 71, 18181842, https://doi.org/10.1175/JAS-D-13-076.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Danilov, S., and D. Gurarie, 2004: Scaling, spectra and zonal jets in beta-plane turbulence. Phys. Fluids, 16, 25922603, https://doi.org/10.1063/1.1752928.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dansgaard, W., and Coauthors, 1993: Evidence for general instability of past climate from a 250-kyr ice-core record. Nature, 364, 218220, https://doi.org/10.1038/364218a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Del Moral, P., 2004: Feynman-Kac Formulae: Genealogical and Interacting Particle Systems with Applications. Probability and Its Applications, Springer-Verlag, 555 pp.

    • Crossref
    • Export Citation
  • Dematteis, G., T. Grafke, M. Onorato, and E. Vanden-Eijnden, 2019: Experimental evidence of hydrodynamic instantons: The universal route to rogue waves. Phys. Rev. X, 9, 041057, https://doi.org/10.1103/PhysRevX.9.041057.

    • Search Google Scholar
    • Export Citation
  • Ditlevsen, P., K. K. Andersen, and A. Svensson, 2007: The DO-climate events are probably noise induced: Statistical investigation of the claimed 1470 years cycle. Climate Past, 3, 129134, https://doi.org/10.5194/cp-3-129-2007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dritschel, D., and M. McIntyre, 2008: Multiple jets as PV staircases: The Phillips effect and the resilience of eddy-transport barriers. J. Atmos. Sci., 65, 855874, https://doi.org/10.1175/2007JAS2227.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • E, W., and E. Vanden-Eijnden, 2006: Towards a theory of transition paths. J. Stat. Phys., 123, 503, https://doi.org/10.1007/s10955-005-9003-9.

  • Ebener, L., G. Margazoglou, J. Friedrich, L. Biferale, and R. Grauer, 2019: Instanton based importance sampling for rare events in stochastic PDEs. Chaos, 29, 063102, https://doi.org/10.1063/1.5085119.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Farrell, B. F., and P. J. Ioannou, 2003: Structural stability of turbulent jets. J. Atmos. Sci., 60, 21012118, https://doi.org/10.1175/1520-0469(2003)060<2101:SSOTJ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Farrell, B. F., and P. J. Ioannou, 2007: Structure and spacing of jets in barotropic turbulence. J. Atmos. Sci., 64, 36523665, https://doi.org/10.1175/JAS4016.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Freidlin, M. I., and A. D. Wentzell, 1984: Random Perturbations of Dynamical Systems. Grundlehren der Mathematischen Wissenschaften, Vol. 260, Springer-Verlag, 326 pp.

    • Crossref
    • Export Citation
  • Galperin, B., and P. Read, Eds., 2019: Zonal Jets: Phenomenology, Genesis, and Physics. Cambridge University Press, 550 pp., https://doi.org/10.1017/9781107358225.

    • Crossref
    • Export Citation
  • Galperin, B., S. Sukoriansky, and H.-P. Huang, 2001: Universal n−5 spectrum of zonal flows on giant planets. Phys. Fluids, 13, 15451548, https://doi.org/10.1063/1.1373684.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Galperin, B., R. M. Young, S. Sukoriansky, N. Dikovskaya, P. L. Read, A. J. Lancaster, and D. Armstrong, 2014: Cassini observations reveal a regime of zonostrophic macroturbulence on Jupiter. Icarus, 229, 295320, https://doi.org/10.1016/j.icarus.2013.08.030.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grafke, T., and E. Vanden-Eijnden, 2019: Numerical computation of rare events via large deviation theory. Chaos, 29, 063118, https://doi.org/10.1063/1.5084025.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grafke, T., R. Grauer, and T. Schäfer, 2015: The instanton method and its numerical implementation in fluid mechanics. J. Phys., 48A, 333001, https://doi.org/10.1088/1751-8113/48/33/333001.

    • Search Google Scholar
    • Export Citation
  • Grebogi, C., E. Ott, and J. A. Yorke, 1983: Crises, sudden changes in chaotic attractors and transient chaos. Physica D, 7, 181200, https://doi.org/10.1016/0167-2789(83)90126-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guyader, A., N. Hengartner, and E. Matzner-Løber, 2011: Simulation and estimation of extreme quantiles and extreme probabilities. Appl. Math. Optim., 64, 171196, https://doi.org/10.1007/s00245-011-9135-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haidvogel, D., and I. Held, 1981: Homogeneous quasi-geostrophic turbulence driven by a uniform temperature gradient. J. Atmos. Sci., 37, 26442660, https://doi.org/10.1175/1520-0469(1980)037<2644:HQGTDB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hartmann, C., R. Banisch, M. Sarich, T. Badowski, and C. Schütte, 2013: Characterization of rare events in molecular dynamics. Entropy, 16, 350376, https://doi.org/10.3390/e16010350.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., 1999: Equatorial superrotation in Earth-like atmospheric models. AMS Annual Meeting, Dallas, TX, Amer. Meteor. Soc., https://www.gfdl.noaa.gov/wp-content/uploads/files/user_files/ih/lectures/super.pdf.

  • Herbert, C., R. Caballero, and F. Bouchet, 2020: Atmospheric bistability and abrupt transitions to superrotation: Wave–jet resonance and Hadley cell feedbacks. J. Atmos. Sci., 77, 3149, https://doi.org/10.1175/JAS-D-19-0089.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, H.-P., and W. A. Robinson, 1998: Two-dimensional turbulence and persistent zonal jets in a global barotropic model. J. Atmos. Sci., 55, 611632, https://doi.org/10.1175/1520-0469(1998)055<0611:TDTAPZ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ingersoll, A. P., and D. Pollard, 1982: Motion in the interiors and atmospheres of Jupiter and Saturn: Scale analysis, anelastic equations, barotropic stability criterion. Icarus, 52, 6280, https://doi.org/10.1016/0019-1035(82)90169-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jougla, T., and D. G. Dritschel, 2017: On the energetics of a two-layer baroclinic flow. J. Fluid Mech., 816, 586618, https://doi.org/10.1017/jfm.2017.79.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kahn, H., and T. Harris, 1951: Estimation of particle transmission by random sampling. Natl. Bur. Stand. Appl. Math. Ser., 12, 2730.

  • Kaspi, Y., and G. R. Flierl, 2007: Formation of jets by baroclinic instability on gas planet atmospheres. J. Atmos. Sci., 64, 31773194, https://doi.org/10.1175/JAS4009.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuo, H. L., 1949: Dynamics instability of two-dimensional nondivergent flow in a barotropic atmosphere. J. Fluid Mech., 6, 105122, https://doi.org/10.1175/1520-0469(1949)006<0105:DIOTDN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Laurie, J., and F. Bouchet, 2015: Computation of rare transitions in the barotropic quasi-geostrophic equations. New J. Phys., 17, 25, https://doi.org/10.1088/1367-2630/17/1/015009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laurie, J., G. Boffetta, G. Falkovich, I. Kolokolov, and V. Lebedev, 2014: Universal profile of the vortex condensate in two-dimensional turbulence. Phys. Rev. Lett., 113, 254503, https://doi.org/10.1103/PhysRevLett.113.254503.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, S., 1997: Maintenance of multiple jets in a barotropic flow. J. Atmos. Sci., 54, 17261738, https://doi.org/10.1175/1520-0469(1997)054<1726:MOMJIA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, S., 2005: Baroclinic multiple zonal jets on the sphere. J. Atmos. Sci., 62, 24842498, https://doi.org/10.1175/JAS3481.1.

  • Lemasquerier, D., B. Favier, and M. L. Bars, 2021: Zonal jets at the laboratory scale: Hysteresis and Rossby waves resonance. J. Fluid Mech., 910, A18, https://doi.org/10.1017/jfm.2020.1000.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lestang, T., F. Bouchet, and E. Lévêque, 2020: Numerical study of extreme mechanical force exerted by a turbulent flow on a bluff body by direct and rare-event sampling techniques. J. Fluid Mech., 895, A19, https://doi.org/10.1017/jfm.2020.293.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1967: The Nature and Theory of the General Circulation of the Atmosphere. World Meteorological Organization, 161 pp.

  • Lucarini, V., and T. Bódai, 2017: Edge states in the climate system: Exploring global instabilities and critical transitions. Nonlinearity, 30, 3266, https://doi.org/10.1088/1361-6544/aa6b11.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manfroi, A., and W. Young, 1999: Slow evolution of zonal jets on the beta plane. J. Atmos. Sci., 56, 784800, https://doi.org/10.1175/1520-0469(1999)056<0784:SEOZJO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maragliano, L., G. Cottone, G. Ciccotti, and E. Vanden-Eijnden, 2010: Mapping the network of pathways of CO diffusion in myoglobin. J. Amer. Chem. Soc., 132, 10101017, https://doi.org/10.1021/ja905671x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marcus, P., 2004: Prediction of a global climate change on Jupiter. Nature, 428, 828831, https://doi.org/10.1038/nature02470.

  • Marcus, P., and C. Lee, 1998: A model for eastward and westward jets in laboratory experiments and planetary atmospheres. Phys. Fluids, 10, 14741489, https://doi.org/10.1063/1.869668.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Metzner, P., C. Schütte, and E. Vanden-Eijnden, 2009: Transition path theory for Markov jump processes. Multiscale Model. Simul., 7, 11921219, https://doi.org/10.1137/070699500.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Onsager, L., and S. Machlup, 1953: Fluctuations and irreversible processes. Phys. Rev., 91, 15051512, https://doi.org/10.1103/PhysRev.91.1505.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paillard, D., 1998: The timing of Pleistocene glaciations from a simple multiple-state climate model. Nature, 391, 378381, https://doi.org/10.1038/34891.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Panetta, R. L., 1993: Zonal jets in wide baroclinically unstable regions: Persistence and scale selection. J. Atmos. Sci., 50, 20732106, https://doi.org/10.1175/1520-0469(1993)050<2073:ZJIWBU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parker, J. B., and J. A. Krommes, 2013: Zonal flow as pattern formation. Phys. Plasmas, 20, 100703, https://doi.org/10.1063/1.4828717.

  • Phillips, N., 1951: A simple three-dimensional model for the study of large-scale extratropical flow patterns. J. Meteor., 8, 381394, https://doi.org/10.1175/1520-0469(1951)008<0381:ASTDMF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pierrehumbert, R., D. Abbot, A. Voigt, and D. Koll, 2011: Climate of the Neoproterozoic. Annu. Rev. Earth Planet. Sci., 39, 417460, https://doi.org/10.1146/annurev-earth-040809-152447.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Plotkin, D. A., R. J. Webber, M. E. O’Neill, J. Weare, and D. S. Abbot, 2019: Maximizing simulated tropical cyclone intensity with action minimization. J. Adv. Model. Earth Syst., 11, 863891, https://doi.org/10.1029/2018MS001419.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Porco, C. C., and Coauthors, 2004: Cassini imaging science: Instrument characteristics and anticipated scientific investigations at Saturn. Space Sci. Rev., 115, 363497, https://doi.org/10.1007/s11214-004-1456-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiu, B., and W. Miao, 2000: Kuroshio path variations south of Japan: Bimodality as a self-sustained internal oscillation. J. Phys. Oceanogr., 30, 21242137, https://doi.org/10.1175/1520-0485(2000)030<2124:KPVSOJ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ragone, F., and F. Bouchet, 2020: Computation of extreme values of time averaged observables in climate models with large deviation techniques. J. Stat. Phys., 179, 16371665, https://doi.org/10.1007/s10955-019-02429-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ragone, F., J. Wouters, and F. Bouchet, 2018: Computation of extreme heat waves in climate models using a large deviation algorithm. Proc. Natl. Acad. Sci. USA, 115, 2429 https://doi.org/10.1073/pnas.1712645115.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rahmstorf, S., 2002: Ocean circulation and climate during the past 120,000 years. Nature, 419, 207214, https://doi.org/10.1038/nature01090.

  • Ravelet, F., L. Marié, A. Chiffaudel, and F. Daviaud, 2004: Multistability and memory effect in a highly turbulent flow: Experimental evidence for a global bifurcation. Phys. Rev. Lett., 93, 164501, https://doi.org/10.1103/PhysRevLett.93.164501.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Read, P., D. Kennedy, N. Lewis, H. Scolan, F. Tabataba-Vakili, Y. Wang, S. Wright, and R. Young, 2020a: Baroclinic and barotropic instabilities in planetary atmospheres: Energetics, equilibration and adjustment. Nonlinear Processes Geophys., 27, 147173, https://doi.org/10.5194/npg-27-147-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Read, P., R. M. Young, and D. Kennedy, 2020b: The turbulent dynamics of Jupiter’s and Saturn’s weather layers: Order out of chaos? Geosci. Lett., 7, 10, https://doi.org/10.1186/s40562-020-00159-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, J. H., 1995: The Giant Planet Jupiter. Cambridge University Press, 418 pp.

  • Rolland, J., and E. Simonnet, 2015: Statistical behavior of adaptive multilevel splitting algorithm in simple models. J. Comput. Phys., 283, 541558, https://doi.org/10.1016/j.jcp.2014.12.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rolland, J., F. Bouchet, and E. Simonnet, 2016: Computing transition rates for the 1-D stochastic Ginzburg–Landau–Allen–Cahn equation for finite-amplitude noise with a rare event algorithm. J. Stat. Phys., 162, 277311, https://doi.org/10.1007/s10955-015-1417-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenbluth, M., and A. Rosenbluth, 1955: Monte Carlo calculation of the average extension of molecular chains. J. Chem. Phys., 23, 356359, https://doi.org/10.1063/1.1741967.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmeits, M. J., and H. A. Dijkstra, 2001: Bimodal behavior of the Kuroshio and the Gulf Stream. J. Phys. Oceanogr., 31, 34353456, https://doi.org/10.1175/1520-0485(2001)031<3435:BBOTKA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, T. M., B. Eckhardt, and J. A. Yorke, 2007: Turbulence transition and the edge of chaos in pipe flow. Phys. Rev. Lett., 99, 034502, https://doi.org/10.1103/PhysRevLett.99.034502.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simon, A. A., M. H. Wong, and G. S. Orton, 2015: First results from the Hubble OPAL program: Jupiter in 2015. Astrophys. J., 812, 5563, https://doi.org/10.1088/0004-637X/812/1/55.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simonnet, E., 2016: Combinatorial analysis of the adaptive last particle method. Stat. Comput., 26, 211230, https://doi.org/10.1007/s11222-014-9489-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Srinivasan, K., and W. R. Young, 2012: Zonostrophic instability. J. Atmos. Sci., 69, 16331656, https://doi.org/10.1175/JAS-D-11-0200.1.

  • Srinivasan, K., and W. R. Young, 2014: Reynolds stress and eddy diffusivity of β-plane shear flows. J. Atmos. Sci., 71, 21692185, https://doi.org/10.1175/JAS-D-13-0246.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tobias, S., and J. Marston, 2013: Direct statistical simulation of out-of-equilibrium jets. Phys. Rev. Lett., 110, 104502, https://doi.org/10.1103/PhysRevLett.110.104502.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tziperman, E., and B. Farrell, 2009: Pliocene equatorial temperature: Lessons from atmospheric superrotation. Paleoceanography, 24, PA1101, https://doi.org/10.1029/2008PA001652.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., and M. E. Maltrud, 1993: Generation of mean flows and jets on a beta plane and over topography. J. Phys. Oceanogr., 23, 13461362, https://doi.org/10.1175/1520-0485(1993)023<1346:GOMFAJ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webber, R. J., D. A. Plotkin, M. E. O’Neill, D. S. Abbot, and J. Weare, 2019: Practical rare event sampling for extreme mesoscale weather. Chaos, 29, 053109, https://doi.org/10.1063/1.5081461.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, G. P., 1979: Planetary circulations. 2: The Jovian quasi-geostrophic regime. J. Atmos. Sci., 36, 932969, https://doi.org/10.1175/1520-0469(1979)036<0932:PCTJQG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, G. P., 2003: Jovian dynamics. Part III: Multiple, migrating, and equatorial jets. J. Atmos. Sci., 60, 12701296, https://doi.org/10.1175/1520-0469(2003)60<1270:JDPIMM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Willis, A. P., and R. R. Kerswell, 2009: Turbulent dynamics of pipe flow captured in a reduced model: Puff relaminarization and localized “edge” states. J. Fluid Mech., 619, 213233, https://doi.org/10.1017/S0022112008004618.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woillez, E., and F. Bouchet, 2019: Barotropic theory for the velocity profile of Jupiter’s turbulent jets: An example for an exact turbulent closure. J. Fluid Mech., 860, 577607, https://doi.org/10.1017/jfm.2018.877.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woillez, E., and F. Bouchet, 2020: Instantons for the destabilization of the inner solar system. Phys. Rev. Lett., 125, 021101, https://doi.org/10.1103/PhysRevLett.125.021101.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wouters, J., and F. Bouchet, 2016: Rare event computation in deterministic chaotic systems using genealogical particle analysis. J. Phys., 49A, 374002, https://doi.org/10.1088/1751-8113/49/37/374002.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 334 0 0
Full Text Views 428 203 17
PDF Downloads 411 180 14