Microphysical and Polarimetric Radar Modeling of Hydrometeor Refreezing

Dana M. Tobin aDepartment of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Dana M. Tobin in
Current site
Google Scholar
PubMed
Close
and
Matthew R. Kumjian aDepartment of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Matthew R. Kumjian in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A unique polarimetric radar signature indicative of hydrometeor refreezing during ice pellet events has been documented in several recent studies, yet the underlying microphysical causes remain unknown. The signature is characterized by enhancements in differential reflectivity (ZDR), specific differential phase (KDP), and linear depolarization ratio (LDR), and a reduction in copolar correlation coefficient (ρhv) within a layer of decreasing radar reflectivity factor at horizontal polarization (ZH). In previous studies, the leading hypothesis for the observed radar signature is the preferential refreezing of small drops. Here, a simplified, one-dimensional, explicit bin microphysics model is developed to simulate the refreezing of fully melted hydrometeors, and coupled with a polarimetric radar forward operator to quantify the impact of preferential refreezing on simulated radar signatures. The modeling results demonstrate that preferential refreezing is insufficient by itself to produce the observed signatures. In contrast, simulations considering an ice shell growing asymmetrically around a freezing particle (i.e., emulating a thicker ice shell on the bottom of a falling particle) produce realistic ZDR enhancements, and also closely replicate observed features in ZH, KDP, LDR, and ρhv. Simulations that assume no increase in particle wobbling with freezing produce an even greater ZDR enhancement, but this comes at the expense of reducing the LDR enhancement. It is suggested that the polarimetric refreezing signature is instead strongly related to both the distribution of the unfrozen liquid portion within a freezing particle and the orientation of this liquid with respect to the horizontal.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Dana M. Tobin, dana.tobin@noaa.gov

Abstract

A unique polarimetric radar signature indicative of hydrometeor refreezing during ice pellet events has been documented in several recent studies, yet the underlying microphysical causes remain unknown. The signature is characterized by enhancements in differential reflectivity (ZDR), specific differential phase (KDP), and linear depolarization ratio (LDR), and a reduction in copolar correlation coefficient (ρhv) within a layer of decreasing radar reflectivity factor at horizontal polarization (ZH). In previous studies, the leading hypothesis for the observed radar signature is the preferential refreezing of small drops. Here, a simplified, one-dimensional, explicit bin microphysics model is developed to simulate the refreezing of fully melted hydrometeors, and coupled with a polarimetric radar forward operator to quantify the impact of preferential refreezing on simulated radar signatures. The modeling results demonstrate that preferential refreezing is insufficient by itself to produce the observed signatures. In contrast, simulations considering an ice shell growing asymmetrically around a freezing particle (i.e., emulating a thicker ice shell on the bottom of a falling particle) produce realistic ZDR enhancements, and also closely replicate observed features in ZH, KDP, LDR, and ρhv. Simulations that assume no increase in particle wobbling with freezing produce an even greater ZDR enhancement, but this comes at the expense of reducing the LDR enhancement. It is suggested that the polarimetric refreezing signature is instead strongly related to both the distribution of the unfrozen liquid portion within a freezing particle and the orientation of this liquid with respect to the horizontal.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Dana M. Tobin, dana.tobin@noaa.gov
Save
  • Beard, K. V., 1985: Simple altitude adjustments to raindrop velocities for Doppler radar analysis. J. Atmos. Oceanic Technol., 2, 468471, https://doi.org/10.1175/1520-0426(1985)002<0468:SAATRV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bigg, E. K., 1953: The formation of atmospheric ice crystals by the freezing of droplets. Quart. J. Roy. Meteor. Soc., 79, 510519, https://doi.org/10.1002/qj.49707934207.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blanchard, D. C., 1957: The supercooling, freezing and melting of giant waterdrops at terminal velocity in air. Artificial Simulation of Rain, Pergamon Press, 233–245.

  • Bohren, C. F., and D. R. Huffman, 1983: Absorption and Scattering of Light by Small Particles. Wiley, 660 pp.

  • Brandes, E. A., G. Zhang, and J. Vivekanandan, 2002: Experiments in rainfall estimation with a polarimetric radar in a subtropical environment. J. Appl. Meteor., 41, 674685, https://doi.org/10.1175/1520-0450(2002)041<0674:EIREWA>2.0.CO;2; Corrigendum, 44, 186, https://doi.org/10.1175/1520-0450(2005)44<186:C>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brooks, C. F., 1920: The nature of sleet and how it is formed. Mon. Wea. Rev., 48, 6972, https://doi.org/10.1175/1520-0493(1920)48<69b:TNOSAH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carmichael, H. E., R. E. Stewart, W. Henson, and J. M. Thériault, 2011: Environmental conditions favoring ice pellet aggregation. Atmos. Res., 101, 844851, https://doi.org/10.1016/j.atmosres.2011.05.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cortinas, J. V., Jr., B. C. Bernstein, C. C. Robbins, and J. W. Strapp, 2004: An analysis of freezing rain, freezing drizzle, and ice pellets across the United States and Canada: 1976–90. Wea. Forecasting, 19, 377390, https://doi.org/10.1175/1520-0434(2004)019<0377:AAOFRF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doviak, R. J., and D. S. Zrnić, 1993: Doppler Radar and Weather Observations. Academic Press, 562 pp.

  • Draine, B. T., and P. J. Flatau, 1994: Discrete-dipole approximation for scattering calculations. J. Opt. Soc. Amer., 11A, 14911499, https://doi.org/10.1364/JOSAA.11.001491.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Foote, G. B., and P. S. duToit, 1969: Terminal velocity of raindrops aloft. J. Appl. Meteor., 8, 249253, https://doi.org/10.1175/1520-0450(1969)008<0249:TVORA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gibson, S. R., R. E. Stewart, and W. Henson, 2009: On the variation of ice pellet characteristics. J. Geophys. Res., 114, D09207, https://doi.org/10.1029/2008JD011260.

    • Search Google Scholar
    • Export Citation
  • Gunn, R., and G. D. Kinzer, 1949: The terminal velocity of fall for water droplets in stagnant air. J. Meteor., 6, 243248, https://doi.org/10.1175/1520-0469(1949)006<0243:TTVOFF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hallett, J., and S. C. Mossop, 1974: Production of secondary ice particles during the riming process. Nature, 249, 2628, https://doi.org/10.1038/249026a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hanesiak, J. M., and R. E. Stewart, 1995: The mesoscale and microscale structure of a severe ice pellets storm. Mon. Wea. Rev., 123, 31443162, https://doi.org/10.1175/1520-0493(1995)123<3144:TMAMSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hogan, A. W., 1985: Is sleet a contact nucleation phenomenon? Proc. 42nd Eastern Snow Conf., Montreal, QC, Canada, ESC, 292–294.

  • Ilotoviz, E., N. Benmoshe, A. P. Khain, V. T. J. Phillips, and A. V. Ryzhkov, 2016: Effect of aerosols on freezing drops, hail and precipitation in a midlatitude storm. J. Atmos. Sci., 73, 109144, https://doi.org/10.1175/JAS-D-14-0155.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, D. A., and J. Hallett, 1968: Freezing and scattering of supercooled water drops. Quart. J. Roy. Meteor. Soc., 94, 468482, https://doi.org/10.1002/qj.49709440204.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khain, A. P., A. Pokrovsky, M. Pinsky, A. Seifert, and V. Phillips, 2004: Simulation of effects of atmospheric aerosols on deep turbulent convective clouds using a spectral microphysics mixed-phase cumulus cloud model. Part I: Model description and possible applications. J. Atmos. Sci., 61, 29632982, https://doi.org/10.1175/JAS-3350.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khain, A. P., D. Rosenfeld, A. Pokrovsky, U. Blahak, and A. Ryzhkov, 2011: The role of CCN in precipitation and hail in a mid-latitude storm as seen in simulations using a spectral (bin) microphysics model in a 2D dynamic frame. Atmos. Res., 99, 129146, https://doi.org/10.1016/j.atmosres.2010.09.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knight, C. A., and N. C. Knight, 1974: Drop freezing in clouds. J. Atmos. Sci., 31, 11741176, https://doi.org/10.1175/1520-0469(1974)031<1174:DFIC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., S. M. Ganson, and A. V. Ryzhkov, 2012: Freezing of raindrops in deep convective updrafts: A microphysical and polarimetric model. J. Atmos. Sci., 69, 34713490, https://doi.org/10.1175/JAS-D-12-067.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., A. V. Ryzhkov, H. D. Reeves, and T. J. Schuur, 2013: A dual-polarization radar signature of hydrometeor refreezing in winter storms. J. Appl. Meteor. Climatol., 52, 25492566, https://doi.org/10.1175/JAMC-D-12-0311.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., S. Mishra, S. E. Giangrande, T. Toto, A. V. Ryzhkov, and A. Bansemer, 2016: Polarimetric radar and aircraft observations of saggy bright bands during MC3E. J. Geophys. Res. Atmos., 121, 35843607, https://doi.org/10.1002/2015JD024446.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., C. P. Martinkus, O. P. Prat, S. Collis, M. van Lier-Walqui, and H. C. Morrison, 2019: A moment-based polarimetric radar forward operator for rain microphysics. J. Appl. Meteor. Climatol., 58, 113130, https://doi.org/10.1175/JAMC-D-18-0121.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., D. M. Tobin, M. Oue, and P. Kollias, 2020: Microphysical insights into ice pellet formation revealed by fully polarimetric Ka-band Doppler radar. J. Appl. Meteor. Climatol., 59, 15571580, https://doi.org/10.1175/JAMC-D-20-0054.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lamb, D., and J. Verlinde, 2011: Physics and Chemistry of Clouds. Cambridge University Press, 584 pp.

  • Lauber, A., A. Kiselev, T. Pander, P. Handmann, and T. Leisner, 2018: Secondary ice formation during freezing of levitated droplets. J. Atmos. Sci., 75, 28152826, https://doi.org/10.1175/JAS-D-18-0052.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., 2008: Assessment of radar signal attenuation caused by the melting hydrometeor layer. IEEE Trans. Geosci. Remote Sens., 46, 10391047, https://doi.org/10.1109/TGRS.2008.915757.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., R. F. Reinking, R. A. Kropi, and B. W. Bartram, 1996: Estimation of ice hydrometeor types and shapes from radar polarization measurements. J. Atmos. Oceanic Technol., 13, 8596, https://doi.org/10.1175/1520-0426(1996)013<0085:EOIHTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maxwell-Garnett, J. C., 1904: Colors in metal glasses and in metallic films. Philos. Trans. Roy. Soc. London, 203A, 385420, https://doi.org/10.1098/rsta.1904.0024.

    • Search Google Scholar
    • Export Citation
  • Murray, B. J., D. O’Sullivan, J. D. Atkinson, and M. E. Webb, 2012: Ice nucleation by particles immersed in supercooled cloud droplets. Chem. Soc. Rev., 41, 65196554, https://doi.org/10.1039/c2cs35200a.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murray, W. A., and R. List, 1972: Freezing of water drops. J. Glaciol., 11, 415429, https://doi.org/10.1017/S0022143000022371.

  • Nagumo, N., and Y. Fujiyoshi, 2015: Microphysical properties of slow-falling and fast-falling ice pellets formed by freezing associated with evaporative cooling. Mon. Wea. Rev., 143, 43764392, https://doi.org/10.1175/MWR-D-15-0054.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nagumo, N., A. Adachi, and H. Yamauchi, 2019: Geometrical properties of hydrometeors during the refreezing process and their effects on dual-polarized radar signals. Mon. Wea. Rev., 147, 17531768, https://doi.org/10.1175/MWR-D-18-0278.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Phillips, V. T. J., A. P. Khain, N. Benmoshe, and E. Ilotoviz, 2014: Theory of time-dependent freezing. Part I: Description of scheme for wet growth of hail. J. Atmos. Sci., 71, 45274557, https://doi.org/10.1175/JAS-D-13-0375.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Phillips, V. T. J., A. P. Khain, N. Benmoshe, E. Ilotoviz, and A. Ryzhkov, 2015: Theory of time-dependent freezing. Part II: Scheme for freezing raindrops and simulations by a cloud model with spectral bin microphysics. J. Atmos. Sci., 72, 262286, https://doi.org/10.1175/JAS-D-13-0376.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., and R. L. Pitter, 1971: A semi-empirical determination of the shape of cloud and raindrops. J. Atmos. Sci., 28, 8694, https://doi.org/10.1175/1520-0469(1971)028<0086:ASEDOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., and J. D. Klett, 1997: Microphysics of Clouds and Precipitation. 2nd ed. Oxford University Press, 953 pp.

  • Ralph, F. M., and Coauthors, 2005: Improving short-term (0–48 h) cool-season quantitative precipitation forecasting—Recommendations from a USWRP workshop. Bull. Amer. Meteor. Soc., 86, 16191632, https://doi.org/10.1175/BAMS-86-11-1615.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ray, P., 1972: Broadband complex refractive indices of ice and water. Appl. Opt., 11, 18361844, https://doi.org/10.1364/AO.11.001836.

  • Reeves, H. D., A. V. Ryzhkov, and J. Krause, 2016: Discrimination between winter precipitation types based on spectral-bin microphysical modeling. J. Appl. Meteor. Climatol., 55, 17471761, https://doi.org/10.1175/JAMC-D-16-0044.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., 2001: Interpretation of polarimetric radar covariance matrix for meteorological scatterers: Theoretical analysis. J. Atmos. Oceanic Technol., 18, 315328, https://doi.org/10.1175/1520-0426(2001)018<0315:IOPRCM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., and D. S. Zrnić, 2019: Radar Polarimetry for Weather Observations. 1st ed. Springer, 486 pp.

    • Crossref
    • Export Citation
  • Ryzhkov, A. V., D. S. Zrnić, and B. A. Gordon, 1998: Polarimetric method for ice water content determination. J. Appl. Meteor., 37, 125134, https://doi.org/10.1175/1520-0450(1998)037<0125:PMFIWC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., D. S. Zrnić, V. N. Bringi, G. Huang, E. A. Brandes, and J. Vivekanandan, 1999: Characteristics of hydrometeor orientation obtained from radar polarimetric measurements in a linear polarization basis. Proc. Int. Geoscience and Remote Sensing Symp., Hamburg, Germany, IEEE, 702–704, https://doi.org/10.1109/IGARSS.1999.773611.

    • Crossref
    • Export Citation
  • Ryzhkov, A. V., D. S. Zrnić, J. C. Hubbert, V. N. Bringi, J. Vivekanandan, and E. A. Brandes, 2002: Polarimetric radar observations and interpretation of co-cross-polar correlation coefficients. J. Atmos. Oceanic Technol., 19, 340354, https://doi.org/10.1175/1520-0426-19.3.340.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., M. Pinsky, A. Pokrovsky, and A. Khain, 2011: Polarimetric radar observation operator for a cloud model with spectral microphysics. J. Appl. Meteor. Climatol., 50, 873894, https://doi.org/10.1175/2010JAMC2363.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., P. Zhang, H. D. Reeves, M. R. Kumjian, T. Tschallener, S. Trömel, and C. Simmer, 2016: Quasi-vertical profiles—A new way to look at polarimetric radar data. J. Atmos. Oceanic Technol., 33, 551562, https://doi.org/10.1175/JTECH-D-15-0020.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sankaré, H., and J. M. Thériault, 2016: On the relationship between the snowflake type aloft and the surface precipitation types at temperatures near 0°C. Atmos. Res., 180, 287296, https://doi.org/10.1016/j.atmosres.2016.06.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, P. L., 1984: Equivalent radar reflectivity factors for snow and ice particles. J. Climate Appl. Meteor., 23, 12581260, https://doi.org/10.1175/1520-0450(1984)023<1258:ERRFFS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spengler, J. D., and N. R. Gokhale, 1972: Freezing of freely suspended, supercooled water drops in a large vertical wind tunnel. J. Appl. Meteor., 11, 11011107, https://doi.org/10.1175/1520-0450(1972)011<1101:FOFSSW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stewart, R. E., 1985: Precipitation types in winter storms. Pure Appl. Geophys., 123, 597609, https://doi.org/10.1007/BF00877456.

  • Stewart, R. E., and R. Crawford, 1995: Some characteristics of the precipitation formed within winter storms over eastern Newfoundland. Atmos. Res., 36, 1737, https://doi.org/10.1016/0169-8095(94)00004-W.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stewart, R. E., R. Crawford, and N. R. Donaldson, 1990: Precipitation characteristics within several Canadian east coast winter storms. Atmos. Res., 25, 293316, https://doi.org/10.1016/0169-8095(90)90016-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stewart, R. E., J. M. Theriault, and W. Henson, 2015: On the characteristics of and processes producing winter precipitation types near 0°C. Bull. Amer. Meteor. Soc., 96, 623639, https://doi.org/10.1175/BAMS-D-14-00032.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takahashi, C., 1975: Deformations of frozen water drops and their frequencies. J. Meteor. Soc. Japan, 53, 402411, https://doi.org/10.2151/jmsj1965.53.6_402.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thériault, J. M., and R. E. Stewart, 2010: A parameterization of the microphysical processes forming many types of winter precipitation. J. Atmos. Sci., 67, 14921508, https://doi.org/10.1175/2009JAS3224.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thériault, J. M., R. E. Stewart, and W. Henson, 2010: On the dependence of winter precipitation types on temperature, precipitation rate, and associated features. J. Appl. Meteor. Climatol., 49, 14291442, https://doi.org/10.1175/2010JAMC2321.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tobin, D. M., and M. R. Kumjian, 2017: Polarimetric radar and surface-based precipitation-type observations of ice pellet to freezing rain transitions. Wea. Forecasting, 32, 20652082, https://doi.org/10.1175/WAF-D-17-0054.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ulbrich, C. W., 1983: Natural variations in the analytical form of the raindrop size distribution. J. Climate Appl. Meteor., 22, 17641775, https://doi.org/10.1175/1520-0450(1983)022<1764:NVITAF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Den Broeke, M. S., D. M. Tobin, and M. R. Kumjian, 2016: Polarimetric radar observations of precipitation type and rate from the 2–3 March 2014 winter storm in Oklahoma and Arkansas. Wea. Forecasting, 31, 11791196, https://doi.org/10.1175/WAF-D-16-0011.1.

    • Search Google Scholar
    • Export Citation
  • Xu, Y., and B. Gustafson, 2001: A generalized multiparticle Mie-solution: Further experimental verification. J. Quant. Spectrosc. Radiat. Transfer, 70, 395419, https://doi.org/10.1016/S0022-4073(01)00019-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zerr, R. J., 1997: Freezing rain: An observational and theoretical study. J. Appl. Meteor., 36, 16471661, https://doi.org/10.1175/1520-0450(1997)036<1647:FRAOAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 244 0 0
Full Text Views 296 117 14
PDF Downloads 297 105 16