• American Meteorological Society, 2020: Psychrometer. Glossary of Meteorology, https://glossary.ametsoc.org/wiki/Psychrometer.

  • Behrangi, A., X. Yin, S. Rajagopal, D. Stampoulis, and H. Ye, 2018: On distinguishing snowfall from rainfall using near-surface atmospheric information: Comparative analysis, uncertainties and hydrologic importance. Quart. J. Roy. Meteor. Soc., 144, 89102, https://doi.org/10.1002/qj.3240.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carlin, J. T., and A. V. Ryzhkov, 2019: Estimation of melting-layer cooling rate from dual-polarization radar: Spectral bin model simulations. J. Appl. Meteor. Climatol., 58, 14851508, https://doi.org/10.1175/JAMC-D-18-0343.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fabry, F., and I. Zawadzki, 1995: Long-term radar observations of the melting layer of precipitation and their interpretation. J. Atmos. Sci., 52, 838851, https://doi.org/10.1175/1520-0469(1995)052<0838:LTROOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., A. Bansemer, P. R. Field, S. L. Durden, J. L. Stith, J. E. Dye, W. Hall, and C. A. Grainger, 2002: Observations and parameterizations of particle size distributions in deep tropical cirrus and stratiform precipitating clouds: Results from in situ observations in TRMM field campaigns. J. Atmos. Sci., 59, 34573491, https://doi.org/10.1175/1520-0469(2002)059<3457:OAPOPS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., C. Schmitt, and A. Bansemer, 2013: Ice cloud particle size distributions and pressure-dependent terminal velocities from in situ observations at temperatures from 0° to −86°C. J. Atmos. Sci., 70, 41234154, https://doi.org/10.1175/JAS-D-12-0124.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., A. Bansemer, M. R. Poellot, and N. Wood, 2015: Observations of ice microphysics through the melting layer. J. Atmos. Sci., 72, 29022928, https://doi.org/10.1175/JAS-D-14-0363.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., S. M. Goss, and M. E. Baldwin, 2000: The melting effect as a factor in precipitation-type forecasting. Wea. Forecasting, 15, 700714, https://doi.org/10.1175/1520-0434(2000)015<0700:TMEAAF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korolev, A., and B. Sussman, 2000: A technique for habit classification of cloud particles. J. Atmos. Oceanic Technol., 17, 10481057, https://doi.org/10.1175/1520-0426(2000)017<1048:ATFHCO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., S. Mishra, S. E. Giangrande, T. Toto, A. V. Ryzhkov, and A. Bansemer, 2016: Polarimetric radar and aircraft observations of saggy bright bands during MC3E. J. Geophys. Res. Atmos., 121, 35843607, https://doi.org/10.1002/2015JD024446.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lo, K. K., and R. E. Passarelli, 1982: The growth of snow in winter storms: An airborne observational study. J. Atmos. Sci., 39, 697706, https://doi.org/10.1175/1520-0469(1982)039<0697:TGOSIW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matsuo, T., and Y. Sasyo, 1981a: Empirical formula for the melting rate of snowflakes. J. Meteor. Soc. Japan, 59, 19, https://doi.org/10.2151/jmsj1965.59.1_1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matsuo, T., and Y. Sasyo, 1981b: Melting of snowflakes below freezing level in the atmosphere. J. Meteor. Soc. Japan, 59, 1025, https://doi.org/10.2151/jmsj1965.59.1_10.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matsuo, T., and Y. Sasyo, 1981c: Non-melting phenomena of snowflakes observed in subsaturated air below freezing level. J. Meteor. Soc. Japan, 59, 2632, https://doi.org/10.2151/jmsj1965.59.1_26.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matsuo, T., Y. Sasyo, and Y. Sato, 1981: Relationship between types of precipitation on the ground and surface meteorological elements. J. Meteor. Soc. Japan, 59, 462476, https://doi.org/10.2151/jmsj1965.59.4_462.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitra, S. K., O. Vohl, M. Ahr, and H. R. Pruppacher, 1990: A wind tunnel and theoretical study of the melting behavior of atmospheric ice particles. IV: Experiment and theory for snow flakes. J. Atmos. Sci., 47, 584591, https://doi.org/10.1175/1520-0469(1990)047<0584:AWTATS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oraltay, R. G., and J. Hallett, 1989: Evaporation and melting of ice crystals: A laboratory study. Atmos. Res., 24, 169189, https://doi.org/10.1016/0169-8095(89)90044-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Praz, C., S. Ding, G. M. McFarquhar, and A. Berne, 2018: A versatile method for ice particle habit classification using airborne imaging probe data. J. Geophys. Res. Atmos., 123, 13 47213 495, https://doi.org/10.1029/2018JD029163.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, R., and H. R. Pruppacher, 1982: A wind tunnel and theoretical study of the melting behavior of atmospheric ice particles. I: A wind tunnel study of frozen drops of radius < 500 μm. J. Atmos. Sci., 39, 152158, https://doi.org/10.1175/1520-0469(1982)039<0152:AWTATS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmitt, C. G., and A. J. Heymsfield, 2010: The dimensional characteristics of ice crystal aggregates from fractal geometry. J. Atmos. Sci., 67, 16051616, https://doi.org/10.1175/2009JAS3187.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sims, E. M., and G. Liu, 2015: A parameterization of the probability of snow–rain transition. J. Hydrometeor., 16, 14661477, https://doi.org/10.1175/JHM-D-14-0211.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tamang, S. K., A. M. Ebtehaj, A. F. Prein, and A. J. Heymsfield, 2020: Linking global changes of snowfall and wet-bulb temperature. J. Climate, 33, 3959, https://doi.org/10.1175/JCLI-D-19-0254.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Twohy, C., A. Schanot, and W. A. Cooper, 1997: Measurement of condensed water content in liquid and ice clouds using an airborne counterflow virtual impactor. J. Atmos. Oceanic Technol., 14, 197202, https://doi.org/10.1175/1520-0426(1997)014<0197:MOCWCI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Willis, P. T., and A. J. Heymsfield, 1989: Structure of the melting layer in mesoscale convective system stratiform precipitation. J. Atmos. Sci., 46, 20082025, https://doi.org/10.1175/1520-0469(1989)046<2008:SOTMLI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wolfensberger, D., D. Scipion, and A. Berne, 2016: Detection and characterization of the melting layer based on polarimetric radar scans. Quart. J. Roy. Meteor. Soc., 142, 108124, https://doi.org/10.1002/qj.2672.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 576 477 53
Full Text Views 234 194 36
PDF Downloads 278 224 29

Survival of Snow in the Melting Layer: Relative Humidity Influence

View More View Less
  • 1 a National Center for Atmospheric Research, Boulder, Colorado
  • | 2 b Johannes Gutenberg University, Mainz, Germany
  • | 3 c Max Planck Institute for Chemistry, Mainz, Germany
  • | 4 d University of Alaska Fairbanks, Fairbanks, Alaska
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

This study quantifies how far snow can fall into the melting layer (ML) before all snow has melted by examining a combination of in situ observations from aircraft measurements in Lagrangian spiral descents from above through the ML and descents and ascents into the ML, as well as an extensive database of NOAA surface observer reports during the past 50 years. The airborne data contain information on the particle phase (solid, mixed, or liquid), population size distributions and shapes, along with temperature, relative humidity, and vertical velocity. A wide range of temperatures and ambient relative humidities are used for both the airborne and ground-based data. It is shown that an ice-bulb temperature of 0°C, together with the air temperature and pressure (altitude), are good first-order predictors of the highest temperature snowflakes can survive in the melting layer before completely melting. Particle size is also important, as is whether the particles are graupel or hail. If the relative humidity is too low, the particles will sublimate completely as they fall into the melting layer. Snow as warm as +7°C is observed from aircraft measurements and surface observations. Snow pellets survive to even warmer temperatures. Relationships are developed to represent the primary findings.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Andrew J. Heymsfield, heyms1@ucar.edu

Abstract

This study quantifies how far snow can fall into the melting layer (ML) before all snow has melted by examining a combination of in situ observations from aircraft measurements in Lagrangian spiral descents from above through the ML and descents and ascents into the ML, as well as an extensive database of NOAA surface observer reports during the past 50 years. The airborne data contain information on the particle phase (solid, mixed, or liquid), population size distributions and shapes, along with temperature, relative humidity, and vertical velocity. A wide range of temperatures and ambient relative humidities are used for both the airborne and ground-based data. It is shown that an ice-bulb temperature of 0°C, together with the air temperature and pressure (altitude), are good first-order predictors of the highest temperature snowflakes can survive in the melting layer before completely melting. Particle size is also important, as is whether the particles are graupel or hail. If the relative humidity is too low, the particles will sublimate completely as they fall into the melting layer. Snow as warm as +7°C is observed from aircraft measurements and surface observations. Snow pellets survive to even warmer temperatures. Relationships are developed to represent the primary findings.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Andrew J. Heymsfield, heyms1@ucar.edu
Save