On the Momentum Flux of Vertically Propagating Orographic Gravity Waves Excited in Nonhydrostatic Flow over Three-Dimensional Orography

Xin Xu aKey Laboratory of Mesoscale Severe Weather, Ministry of Education, Nanjing University, Nanjing, Jiangsu, China
bSchool of Atmospheric Sciences, Nanjing University, Nanjing, Jiangsu, China

Search for other papers by Xin Xu in
Current site
Google Scholar
PubMed
Close
,
Runqiu Li aKey Laboratory of Mesoscale Severe Weather, Ministry of Education, Nanjing University, Nanjing, Jiangsu, China
bSchool of Atmospheric Sciences, Nanjing University, Nanjing, Jiangsu, China

Search for other papers by Runqiu Li in
Current site
Google Scholar
PubMed
Close
,
Miguel A. C. Teixeira cDepartment of Meteorology, University of Reading, Reading, United Kingdom

Search for other papers by Miguel A. C. Teixeira in
Current site
Google Scholar
PubMed
Close
, and
Yixiong Lu dBeijing Climate Center, China Meteorological Administration, Beijing, China

Search for other papers by Yixiong Lu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This work studies nonhydrostatic effects (NHE) on the momentum flux of orographic gravity waves (OGWs) forced by isolated three-dimensional orography. Based on linear wave theory, an asymptotic expression for low horizonal Froude number [Fr=U2+(γV)2/(Na) where (U, V) is the mean horizontal wind, γ and a are the orography anisotropy and half width, and N is the buoyancy frequency] is derived for the gravity wave momentum flux (GWMF) of vertically propagating waves. According to this asymptotic solution, which is quite accurate for any value of Fr, NHE can be divided into two terms (NHE1 and NHE2). The first term contains the high-frequency parts of the wave spectrum that are often mistaken as hydrostatic waves, and only depends on Fr. The second term arises from the difference between the dispersion relationships of hydrostatic and nonhydrostatic OGWs. Having an additional dependency on the horizontal wind direction and orography anisotropy, this term can change the GWMF direction. Examination of NHE for OGWs forced by both circular and elliptical orography reveals that the GWMF is reduced as Fr increases, at a faster rate than for two-dimensional OGWs forced by a ridge. At low Fr, the GWMF reduction is mostly attributed to the NHE2 term, whereas the NHE1 term starts to dominate above about Fr = 0.4. The behavior of NHE is mainly determined by Fr, while horizontal wind direction and orography anisotropy play a minor role. Implications of the asymptotic GWMF expression for the parameterization of nonhydrostatic OGWs in high-resolution and/or variable-resolution models are discussed.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xin Xu, xinxu@nju.edu.cn

Abstract

This work studies nonhydrostatic effects (NHE) on the momentum flux of orographic gravity waves (OGWs) forced by isolated three-dimensional orography. Based on linear wave theory, an asymptotic expression for low horizonal Froude number [Fr=U2+(γV)2/(Na) where (U, V) is the mean horizontal wind, γ and a are the orography anisotropy and half width, and N is the buoyancy frequency] is derived for the gravity wave momentum flux (GWMF) of vertically propagating waves. According to this asymptotic solution, which is quite accurate for any value of Fr, NHE can be divided into two terms (NHE1 and NHE2). The first term contains the high-frequency parts of the wave spectrum that are often mistaken as hydrostatic waves, and only depends on Fr. The second term arises from the difference between the dispersion relationships of hydrostatic and nonhydrostatic OGWs. Having an additional dependency on the horizontal wind direction and orography anisotropy, this term can change the GWMF direction. Examination of NHE for OGWs forced by both circular and elliptical orography reveals that the GWMF is reduced as Fr increases, at a faster rate than for two-dimensional OGWs forced by a ridge. At low Fr, the GWMF reduction is mostly attributed to the NHE2 term, whereas the NHE1 term starts to dominate above about Fr = 0.4. The behavior of NHE is mainly determined by Fr, while horizontal wind direction and orography anisotropy play a minor role. Implications of the asymptotic GWMF expression for the parameterization of nonhydrostatic OGWs in high-resolution and/or variable-resolution models are discussed.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xin Xu, xinxu@nju.edu.cn
Save
  • Amemiya, A., and K. Sato, 2016: A new gravity wave parameterization including three-dimensional propagation. J. Meteor. Soc. Japan, 94, 237256, https://doi.org/10.2151/jmsj.2016-013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beljaars, A. C. M., A. R. Brown, and N. Wood, 2004: A new parametrization of turbulent orographic form drag. Quart. J. Roy. Meteor. Soc., 130, 13271347, https://doi.org/10.1256/qj.03.73.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Broutman, D., J. W. Rottman, and S. D. Eckermann, 2002: Maslov’s method for stationary hydrostatic mountain waves. Quart. J. Roy. Meteor. Soc., 128, 11591171, https://doi.org/10.1256/003590002320373247.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Broutman, D., J. W. Rottman, and S. D. Eckermann, 2003: A simplified Fourier method for nonhydrostatic mountain waves. J. Atmos. Sci., 60, 26862696, https://doi.org/10.1175/1520-0469(2003)060<2686:ASFMFN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, C. A., D. A. Ahijevych, W. Wang, and W. C. Skamarock, 2016: Evaluating medium-range tropical cyclone forecasts in uniform- and variable-resolution global models. Mon. Wea. Rev., 144, 41414160, https://doi.org/10.1175/MWR-D-16-0021.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doyle, J. D., and D. R. Durran, 2002: The dynamics of mountain-wave-induced rotors. J. Atmos. Sci., 59, 186201, https://doi.org/10.1175/1520-0469(2002)059<0186:TDOMWI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eckermann, S. D., J. Ma, and D. Broutman, 2015: Effects of horizontal geometrical spreading on the parameterization of orographic gravity wave drag. Part I: Numerical transform solutions. J. Atmos. Sci., 72, 23302347, https://doi.org/10.1175/JAS-D-14-0147.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ehard, B., and Coauthors, 2017: Horizontal propagation of large-amplitude mountain waves into the polar night jet. J. Geophys. Res. Atmos., 122, 14231436, https://doi.org/10.1002/2016JD025621.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., and M. J. Alexander, 2003: Gravity wave dynamics and effects in the middle atmosphere. Rev. Geophys., 41, 1003, https://doi.org/10.1029/2001RG000106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grubišić, V., and P. K. Smolarkiewicz, 1997: The effect of critical levels on 3D orographic flows: Linear regime. J. Atmos. Sci., 54, 19431960, https://doi.org/10.1175/1520-0469(1997)054<1943:TEOCLO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guarino, M.-V., and M. A. C. Teixeira, 2017: Non-hydrostatic effects on mountain wave breaking in directional shear flows. Quart. J. Roy. Meteor. Soc., 143, 32913297, https://doi.org/10.1002/qj.3157.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, Y.-J., and A. Arakawa, 1995: Improvement of orographic gravity wave parameterization using a mesoscale gravity wave model. J. Atmos. Sci., 52, 18751902, https://doi.org/10.1175/1520-0469(1995)052<1875:IOOGWP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, Y.-J., and J. D. Doyle, 2005: Extension of an orographic-drag parameterization scheme to incorporate orographic anisotropy and flow blocking. Quart. J. Roy. Meteor. Soc., 131, 18931921, https://doi.org/10.1256/qj.04.160.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, Y.-J., S. D. Eckermann, and H. Y. Chun, 2003: An overview of the past, present and future of gravity-wave drag parametrization for numerical climate and weather prediction models. Atmos.–Ocean, 41, 6598, https://doi.org/10.3137/ao.410105.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., and D. R. Durran, 1983: An upper boundary condition permitting internal gravity wave radiation in numerical mesoscale models. Mon. Wea. Rev., 111, 430444, https://doi.org/10.1175/1520-0493(1983)111<0430:AUBCPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lott, F., and M. J. Miller, 1997: A new subgrid-scale orographic drag parameterization: Its formulation and testing. Quart. J. Roy. Meteor. Soc., 123, 101127, https://doi.org/10.1002/qj.49712353704.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marks, C. J., and S. D. Eckermann, 1995: A three-dimensional nonhydrostatic ray-tracing model for gravity waves: Formulation and preliminary results for the middle atmosphere. J. Atmos. Sci., 52, 19591984, https://doi.org/10.1175/1520-0469(1995)052<1959:ATDNRT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McFarlane, N. A., 1987: The effect of orographically excited gravity wave drag on the general circulation of the lower stratosphere and troposphere. J. Atmos. Sci., 44, 17751800, https://doi.org/10.1175/1520-0469(1987)044<1775:TEOOEG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miranda, P. M. A., and I. N. James, 1992: Non-linear three-dimensional effects on the wave drag: Splitting flow and breaking waves. Quart. J. Roy. Meteor. Soc., 118, 10571081, https://doi.org/10.1002/qj.49711850803.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., G. J. Shutts, and R. Swinbank, 1986: Alleviation of systematic westerly bias in general circulation and numerical weather prediction models through an orographic gravity wave drag parameterization. Quart. J. Roy. Meteor. Soc., 112, 10011039, https://doi.org/10.1002/qj.49711247406.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Phillips, D. S., 1984: Analytical surface pressure and drag for linear hydrostatic flow over three-dimensional elliptical mountains. J. Atmos. Sci., 41, 10731084, https://doi.org/10.1175/1520-0469(1984)041<1073:ASPADF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Plougonven, R., A. de la Cámara, A. Hertzog, and F. Lott, 2020: How does knowledge of atmospheric gravity waves guide their parameterizations? Quart. J. Roy. Meteor. Soc., 146, 15291543, https://doi.org/10.1002/qj.3732.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pulido, M., and C. Rodas, 2011: A higher-order ray approximation applied to orographic waves: Gaussian beam approximation. J. Atmos. Sci., 68, 4660, https://doi.org/10.1175/2010JAS3468.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scinocca, J. F., and N. A. McFarlane, 2000: The parametrization of drag induced by stratified flow over anisotropic orography. Quart. J. Roy. Meteor. Soc., 126, 23532393, https://doi.org/10.1002/qj.49712656802.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scorer, R. S., 1949: Theory of waves in the lee of mountains. Quart. J. Roy. Meteor. Soc., 75, 4156, https://doi.org/10.1002/qj.49707532308.

  • Shutts, G., 1995: Gravity-wave drag parameterization over complex terrain: The effect of critical-level absorption in directional wind-shear. Quart. J. Roy. Meteor. Soc., 121, 10051021, https://doi.org/10.1002/qj.49712152504.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shutts, G., 1998: Stationary gravity-wave structure in flows with directional wind shear. Quart. J. Roy. Meteor. Soc., 124, 14211442, https://doi.org/10.1002/qj.49712454905.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W., J. B. Klemp, M. G. Duda, L. D. Fowler, S.-H. Park, and T. D. Ringler, 2012: A multiscale nonhydrostatic atmospheric model using centroidal Voronoi tesselations and C-grid staggering. Mon. Wea. Rev., 140, 30903105, https://doi.org/10.1175/MWR-D-11-00215.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. B., 1979: The influence of mountains on the atmosphere. Advances in Geophysics, Vol. 21, Academic Press, 87–230, https://doi.org/10.1016/S0065-2687(08)60262-9.

    • Crossref
    • Export Citation
  • Smith, R. B., 1980: Linear theory of stratified hydrostatic flow past an isolated mountain. Tellus, 32, 348364, https://doi.org/10.3402/tellusa.v32i4.10590.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. B., 1985: On severe downslope winds. J. Atmos. Sci., 42, 25972603, https://doi.org/10.1175/1520-0469(1985)042<2597:OSDW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Song, I.-S., and H.-Y. Chun, 2008: A Lagrangian spectral parameterization of gravity wave drag induced by cumulus convection. J. Atmos. Sci., 65, 12041224, https://doi.org/10.1175/2007JAS2369.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Teixeira, M. A. C., and P. M. A. Miranda, 2006: A linear model of gravity wave drag for hydrostatic sheared flow over elliptical mountains. Quart. J. Roy. Meteor. Soc., 132, 24392458, https://doi.org/10.1256/qj.05.220.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Teixeira, M. A. C., and P. M. A. Miranda, 2009: On the momentum fluxes associated with mountain waves in directionally sheared flows. J. Atmos. Sci., 66, 34193433, https://doi.org/10.1175/2009JAS3065.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Teixeira, M. A. C., and C. L. Yu, 2014: The gravity wave momentum flux in hydrostatic flow with directional shear over elliptical mountains. Eur. J. Mech. Fluids, 47, 1631, https://doi.org/10.1016/j.euromechflu.2014.02.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Teixeira, M. A. C., P. M. A. Miranda, and M. A. Valente, 2004: An analytical model of mountain wave drag for wind profiles with shear and curvature. J. Atmos. Sci., 61, 10401054, https://doi.org/10.1175/1520-0469(2004)061<1040:AAMOMW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Teixeira, M. A. C., P. M. A. Miranda, and R. M. Cardoso, 2008: Asymptotic gravity wave drag expression for non-hydrostatic rotating flow over a ridge. Quart. J. Roy. Meteor. Soc., 134, 271276, https://doi.org/10.1002/qj.196.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, H. V., M. A. C. Teixeira, J. Methven, and S. B. Vosper, 2019: Sensitivity of the surface orographic gravity wave drag to vertical wind shear over Antarctica. Quart. J. Roy. Meteor. Soc., 145, 164178, https://doi.org/10.1002/qj.3416.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wurtele, M. G., R. D. Sharman, and A. Datta, 1996: Atmospheric lee waves. Annu. Rev. Fluid Mech., 28, 429476, https://doi.org/10.1146/annurev.fl.28.010196.002241.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, X., Y. Wang, and M. Xue, 2012: Momentum flux and flux divergence of gravity waves in directional shear flows over three-dimensional mountains. J. Atmos. Sci., 69, 37333744, https://doi.org/10.1175/JAS-D-12-044.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, X., J. Song, Y. Wang, and M. Xue, 2017a: Quantifying the effect of horizontal propagation of three-dimensional mountain waves on the wave momentum flux using Gaussian beam approximation. J. Atmos. Sci., 74, 17831798, https://doi.org/10.1175/JAS-D-16-0275.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, X., S. Shu, and Y. Wang, 2017b: Another look on the structure of mountain waves: A spectral perspective. Atmos. Res., 191, 156163, https://doi.org/10.1016/j.atmosres.2017.03.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, X., Y. Tang, Y. Wang, and M. Xue, 2018: Directional absorption of mountain waves and its influence on the wave momentum transport in the Northern Hemisphere. J. Geophys. Res. Atmos., 123, 26402654, https://doi.org/10.1002/2017JD027968.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, X., M. Xue, M. A. C. Teixeira, J. Tang, and Y. Wang, 2019: Parameterization of directional absorption of orographic gravity waves and its impact on the atmospheric general circulation simulated by the Weather Research and Forecasting Model. J. Atmos. Sci., 76, 34353453, https://doi.org/10.1175/JAS-D-18-0365.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, X., M. A. C. Teixeira, M. Xue, Y. Lu, and J. Tang, 2020: Impacts of wind profile shear and curvature on the parameterized orographic gravity wave stress in the Weather Research and Forecasting Model. Quart. J. Roy. Meteor. Soc., 146, 30863100, https://doi.org/10.1002/qj.3828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, M., and A. J. Thorpe, 1991: A mesoscale numerical model using the nonhydrostatic sigma-coordinate equations: Model experiments with dry mountain flows. Mon. Wea. Rev., 119, 11681185, https://doi.org/10.1175/1520-0493(1991)119<1168:AMNMUT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, M., K. K. Droegemeier, and V. Wong, 2000: The Advanced Regional Prediction System (ARPS)—A multi-scale nonhydrostatic atmospheric simulation and prediction model. Part I: Model dynamics and verification. Meteor. Atmos. Phys., 75, 161193, https://doi.org/10.1007/s007030070003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zängl, G., 2003: Orographic gravity waves close to the nonhydrostatic limit of vertical propagation. J. Atmos. Sci., 60, 20452063, https://doi.org/10.1175/1520-0469(2003)060<2045:OGWCTT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., J. Li, R. Yu, S. Zhang, Z. Liu, J. Huang, and Y. Zhou, 2019: A layer-averaged nonhydrostatic dynamical framework on an unstructured mesh for global and regional atmospheric modeling: Model description, baseline evaluation, and sensitivity exploration. J. Adv. Model. Earth Syst., 11, 16851714, https://doi.org/10.1029/2018MS001539.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, L., S.-J. Lin, J.-H. Chen, L. M. Harris, X. Chen, and S. L. Rees, 2019: Toward convective-scale prediction within the Next Generation Global Prediction System. Bull. Amer. Meteor. Soc., 100, 12251243, https://doi.org/10.1175/BAMS-D-17-0246.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 288 0 0
Full Text Views 1273 806 53
PDF Downloads 546 249 24