• Abma, D., T. Heus, and J. Mellado, 2013: Direct numerical simulation of evaporative cooling at the lateral boundary of shallow cumulus clouds. J. Atmos. Sci., 70, 20882102, https://doi.org/10.1175/JAS-D-12-0230.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arakawa, A., and W. H. Schubert, 1974: Interaction of a cumulus cloud ensemble with the large-scale environment, part I. J. Atmos. Sci., 31, 674701, https://doi.org/10.1175/1520-0469(1974)031<0674:IOACCE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bechtold, P., E. Bazile, F. Guichard, P. Mascart, and E. Richard, 2001: A mass-flux convection scheme for regional and global models. Quart. J. Roy. Meteor. Soc., 127, 869886, https://doi.org/10.1002/qj.49712757309.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bisset, D. K., J. C. R. Hunt, and M. M. Rogers, 2002: The turbulent/non-turbulent interface bounding a far wake. J. Fluid Mech., 451, 383410, https://doi.org/10.1017/S0022112001006759.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bony, S., and Coauthors, 2015: The role of convective-scale precipitation downdrafts in cumulus and synoptic-scale interactions. Nat. Geosci., 8, 261–268, https://doi.org/10.1038/ngeo2398.

    • Crossref
    • Export Citation
  • Couvreux, F., F. Hourdin, and C. Rio, 2010: Resolved versus parametrized boundary-layer plumes. Part I: A parametrization-oriented conditional sampling in large-eddy simulations. Bound.-Layer Meteor., 134, 441458, https://doi.org/10.1007/s10546-009-9456-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Craske, J., and M. van Reeuwijk, 2015: Energy dispersion in turbulent jets. Part 1. Direct simulation of steady and unsteady jets. J. Fluid Mech., 763, 500537, https://doi.org/10.1017/jfm.2014.640.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • da Silva, C., J. Hunt, I. Eames, and J. Westerweel, 2014: Interfacial layers between regions of different turbulence intensity. Annu. Rev. Fluid Mech., 46, 567590, https://doi.org/10.1146/annurev-fluid-010313-141357.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dawe, J., and P. Austin, 2011: The influence of the cloud shell on tracer budget measurements of LES cloud entrainment. J. Atmos. Sci., 68, 29092920, https://doi.org/10.1175/2011JAS3658.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Roode, S. R., and C. S. Bretherton, 2003: Mass-flux budgets of shallow cumulus clouds. J. Atmos. Sci., 60, 137151, https://doi.org/10.1175/1520-0469(2003)060<0137:MFBOSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Rooy, W. C., and Coauthors, 2013: Entrainment and detrainment in cumulus convection: An overview. Quart. J. Roy. Meteor. Soc., 139, 119, https://doi.org/10.1002/qj.1959.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fodor, K., and J. P. Mellado, 2020: New insights into wind shear effects on entrainment in convective boundary layers using conditional analysis. J. Atmos. Sci., 77, 32273248, https://doi.org/10.1175/JAS-D-19-0345.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gerard, L., 2015: Bulk mass-flux perturbation formulation for a unified approach of deep convection at high resolution. Mon. Wea. Rev., 143, 40384063, https://doi.org/10.1175/MWR-D-15-0030.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gregory, D., and P. R. Rowntree, 1990: A mass flux convection scheme with representation of cloud ensemble characteristics and stability-dependent closure. Mon. Wea. Rev., 118, 14831506, https://doi.org/10.1175/1520-0493(1990)118<1483:AMFCSW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gu, J.-F., R. S. Plant, C. E. Holloway, T. R. Jones, A. Stirling, P. A. Clark, S. J. Woolnough, and T. L. Webb, 2020: Evaluation of the bulk mass flux formulation using large-eddy simulations. J. Atmos. Sci., 77, 21152137, https://doi.org/10.1175/JAS-D-19-0224.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heus, T., and H. Jonker, 2008: Subsiding shells around shallow cumulus clouds. J. Atmos. Sci., 65, 10031018, https://doi.org/10.1175/2007JAS2322.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heus, T., G. van Dijk, H. Jonker, and H. van den Akker, 2008: Mixing in shallow cumulus clouds studied by Lagrangian particle tracking. J. Atmos. Sci., 65, 25812597, https://doi.org/10.1175/2008JAS2572.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holland, J. Z., and E. M. Rasmusson, 1973: Measurements of the atmospheric mass, energy, and momentum budgets over a 500-kilometer square of tropical ocean. Mon. Wea. Rev., 101, 4455, https://doi.org/10.1175/1520-0493(1973)101<0044:MOTAME>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., 1976: The role of convective-scale precipitation downdrafts in cumulus and synoptic-scale interactions. J. Atmos. Sci., 33, 18901910, https://doi.org/10.1175/1520-0469(1976)033<1890:TROCSP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jonker, H. J., T. Heus, and P. P. Sullivan, 2008: A refined view of vertical mass transport by cumulus convection. Geophys. Res. Lett., 35, L07810, https://doi.org/10.1029/2007GL032606.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and J. M. Fritsch, 1990: A one-dimensional entraining/detraining plume model and its application in convective parameterization. J. Atmos. Sci., 47, 27842802, https://doi.org/10.1175/1520-0469(1990)047<2784:AODEPM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kankanwadi, K. S., and O. R. H. Buxton, 2020: Turbulent entrainment into a cylinder wake from a turbulent background. J. Fluid Mech., 905, A35, https://doi.org/10.1017/jfm.2020.755.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moorthi, S., and M. J. Suarez, 1992: Relaxed Arakawa–Schubert: A parameterization of moist convection for general circulation models. Mon. Wea. Rev., 120, 9781002, https://doi.org/10.1175/1520-0493(1992)120<0978:RASAPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nair, V., T. Heus, and M. van Reeuwijk, 2020: Dynamics of subsiding shells in actively growing clouds with vertical updrafts. J. Atmos. Sci., 77, 13531369, https://doi.org/10.1175/JAS-D-19-0018.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, S.-B., P. Gentine, K. Schneider, and M. Farge, 2016: Coherent structures in the boundary and cloud layers: Role of updrafts, subsiding shells, and environmental subsidence. J. Atmos. Sci., 73, 17891814, https://doi.org/10.1175/JAS-D-15-0240.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, S.-B., T. Heus, and P. Gentine, 2017: Role of convective mixing and evaporative cooling in shallow convection. J. Geophys. Res. Atmos., 122, 53515363, https://doi.org/10.1002/2017JD026466.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Perrin, V., and H. Jonker, 2015: Lagrangian droplet dynamics in the subsiding shell of a cloud using direct numerical simulations. J. Atmos. Sci., 72, 40154028, https://doi.org/10.1175/JAS-D-15-0045.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romps, D., 2010: A direct measure of entrainment. J. Atmos. Sci., 67, 19081927, https://doi.org/10.1175/2010JAS3371.1.

  • Siebesma, A. P., 1998: Shallow cumulus convection. Buoyant Convection in Geophysical Flows, E. J. Plate, Ed., Springer, 441–486.

    • Crossref
    • Export Citation
  • Siebesma, A. P., and J. Cuijpers, 1995: Evaluation of parametric assumptions for shallow cumulus convection. J. Atmos. Sci., 52, 650666, https://doi.org/10.1175/1520-0469(1995)052<0650:EOPAFS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Siebesma, A. P., and Coauthors, 2003: A large eddy simulation intercomparison study of shallow cumulus convection. J. Atmos. Sci., 60, 12011219, https://doi.org/10.1175/1520-0469(2003)60<1201:ALESIS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sommeria, G., and J. Deardorff, 1976: Subgrid-scale condensation in models of nonprecipitating clouds. J. Atmos. Sci., 34, 344355, https://doi.org/10.1175/1520-0469(1977)034<0344:SSCIMO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev., 117, 17791800, https://doi.org/10.1175/1520-0493(1989)117<1779:ACMFSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Heerwaarden, C. C., B. J. H. van Stratum, T. Heus, J. A. Gibbs, E. Fedorovich, and J. P. Mellado, 2017: MicroHH 1.0: A computational fluid dynamics code for direct numerical simulation and large-eddy simulation of atmospheric boundary layer flows. Geosci. Model Dev., 10, 31453165, https://doi.org/10.5194/gmd-10-3145-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yeo, K., and D. M. Romps, 2012: Measurement of convective entrainment using Lagrangian particles. J. Atmos. Sci., 70, 266277, https://doi.org/10.1175/JAS-D-12-0144.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 201 201 18
Full Text Views 104 104 11
PDF Downloads 142 142 18

A Lagrangian Study of Interfaces at the Edges of Cumulus Clouds

View More View Less
  • 1 a Department of Civil and Environmental Engineering, Imperial College London, London, United Kingdom
  • | 2 b Department of Physics, Cleveland State University, Cleveland, Ohio
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Interfaces at the edge of an idealized, nonprecipitating, warm cloud are studied using direct numerical simulation (DNS) complemented with a Lagrangian particle tracking routine. Once a shell has formed, four zones can be distinguished: the cloud core, visible shell, invisible shell, and the environment. The union of the visible and invisible regions is the shell commonly referred to in literature. The boundary between the invisible shell and the environment is the turbulent–nonturbulent interface (TNTI), which is typically not considered in cloud studies. Three million particles were seeded homogeneously across the domain and properties were recorded along individual trajectories. The results demonstrate that the traditional cloud boundary (separating cloudy and noncloudy regions using thresholds applied on liquid condensate or updraft velocity) are some distance away from the TNTI. Furthermore, there is no dynamic difference between the traditional liquid-condensate boundary and the region extending to the TNTI. However, particles crossing the TNTI exhibit a sharp jump in enstrophy and a smooth increase in buoyancy. The traditional cloud boundary coincides with the location of minimum buoyancy in the shell. The shell premixes the entraining and detraining air and analysis reveals a highly skewed picture of entrainment and detrainment at the traditional cloud boundary. A preferential entrainment of particles with velocity and specific humidity higher than the mean values in the shell is observed. Large-eddy simulation of a more realistic setup detects an interface with similar properties using the same thresholds as in the DNS, indicating that the DNS results extrapolate beyond their idealized conditions.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding address: Vishnu Nair, vs2016@imperial.ac.uk

Abstract

Interfaces at the edge of an idealized, nonprecipitating, warm cloud are studied using direct numerical simulation (DNS) complemented with a Lagrangian particle tracking routine. Once a shell has formed, four zones can be distinguished: the cloud core, visible shell, invisible shell, and the environment. The union of the visible and invisible regions is the shell commonly referred to in literature. The boundary between the invisible shell and the environment is the turbulent–nonturbulent interface (TNTI), which is typically not considered in cloud studies. Three million particles were seeded homogeneously across the domain and properties were recorded along individual trajectories. The results demonstrate that the traditional cloud boundary (separating cloudy and noncloudy regions using thresholds applied on liquid condensate or updraft velocity) are some distance away from the TNTI. Furthermore, there is no dynamic difference between the traditional liquid-condensate boundary and the region extending to the TNTI. However, particles crossing the TNTI exhibit a sharp jump in enstrophy and a smooth increase in buoyancy. The traditional cloud boundary coincides with the location of minimum buoyancy in the shell. The shell premixes the entraining and detraining air and analysis reveals a highly skewed picture of entrainment and detrainment at the traditional cloud boundary. A preferential entrainment of particles with velocity and specific humidity higher than the mean values in the shell is observed. Large-eddy simulation of a more realistic setup detects an interface with similar properties using the same thresholds as in the DNS, indicating that the DNS results extrapolate beyond their idealized conditions.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding address: Vishnu Nair, vs2016@imperial.ac.uk
Save