• Adhikari, N. B., and K. Nakamura, 2002: Detectable rain range of spaceborne Ka-band radar estimated from TRMM Precipitation Radar data. J. Atmos. Oceanic Technol., 19, 18781885, https://doi.org/10.1175/1520-0426(2002)019<1878:DRROSK>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Akiyama, S., S. Shige, M. K. Yamamoto, and T. Iguchi, 2019: Heavy ice precipitation band in an oceanic extratropical cyclone observed by GPM/DPR: 1. A case study. Geophys. Res. Lett., 46, 7007–7014, https://doi.org/10.1029/2019GL082896.

    • Crossref
    • Export Citation
  • Baker, B. A., and R. P. Lawson, 2006: Improvement in determination of ice water content from two-dimensional particle imagery. Part I: Image to mass relationships. J. Appl. Meteor., 45, 12821290, https://doi.org/10.1175/JAM2398.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Behrangi, A., and Coauthors, 2014: Status of high-latitude precipitation estimates from observations and reanalyses. J. Geophys. Res. Atmos., 121, 44684486, https://doi.org/10.1002/2015JD024546.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Behrangi, A., and Coauthors, 2016: Status of high-latitude precipitation estimates from observations and reanalyses. J. Geophys. Res. Atmos., 121, 4468–4486, https://doi.org/10.1002/2015jd024546.

    • Crossref
    • Export Citation
  • Bennartz, R., F. Fell, D. Schuettemeyer, R. Bennartz, C. Pettersen, and M. D. Shupe, 2019: Spatial and temporal variability of snowfall over Greenland from CloudSat observations. Atmos. Chem. Phys., 19, 81018121, https://doi.org/10.5194/acp-19-8101-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Borque, P., K. J. Harnos, S. W. Nesbitt, and G. M. McFarquhar, 2019: Improved parameterization of ice particle size distributions using uncorrelated mass spectrum parameters: Results from GCPEx. J. Appl. Meteor. Climatol., 58, 16571676, https://doi.org/10.1175/JAMC-D-18-0203.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chase, R. J., and Coauthors, 2018: Evaluation of triple-frequency radar retrieval of snowfall properties using coincident airborne in situ observations during OLYMPEX. Geophys. Res. Lett., 45, 57525760, https://doi.org/10.1029/2018GL077997.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chase, R. J., S. W. Nesbitt, and G. M. McFarquhar, 2020: Evaluation of the microphysical assumptions within GPM-DPR using ground-based observations of rain and snow. Atmosphere, 11, 619, https://doi.org/10.3390/atmos11060619.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colle, B. A., D. Stak, and S. E. Yuter, 2014: Surface microphysical observations within East Coast winter storms on Long Island, New York. Mon. Wea. Rev., 142, 31263146, https://doi.org/10.1175/MWR-D-14-00035.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, S., G. M. McFarquhar, S. W. Nesbitt, R. Chase, M. R. Poellot, and H. Wang, 2020: The dependence of mass-dimensional relationships on median mass diameter. Atmosphere, 11, 756, https://doi.org/10.3390/atmos11070756.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duffy, G., and R. Bennartz, 2018: The role of melting snow in the ocean surface heat budget. Geophys. Res. Lett., 45, 97829789, https://doi.org/10.1029/2018GL079182.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Finlon, J. A., G. M. McFarquhar, S. W. Nesbitt, R. M. Rauber, H. Morrison, W. Wu, and P. Zhang, 2019: A novel approach for characterizing the variability in mass-dimension relationships: Results from MC3E. Atmos. Chem. Phys., 19, 36213643, https://doi.org/10.5194/acp-19-3621-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., and J. L. Parrish, 1978: A computational technique for increasing the effective sampling volume of the PMS two-dimensional particle size spectrometer. J. Appl. Meteor., 17, 15661572, https://doi.org/10.1175/1520-0450(1978)017<1566:ACTFIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., C. Schmitt, A. Bansemer, and C. H. Twohy, 2010: Improved representation of ice particle masses based on observations in natural clouds. J. Atmos. Sci., 67, 33033318, https://doi.org/10.1175/2010JAS3507.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hiley, M. J., M. S. Kulie, and R. Bennartz, 2011: Uncertainty analysis for CloudSat snowfall retrievals. J. Appl. Meteor. Climatol., 50, 399418, https://doi.org/10.1175/2010JAMC2505.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hogan, R. J., L. Tian, P. R. A. Brown, C. D. Westbrook, A. J. Heymsfield, and J. D. Eastment, 2012: Radar scattering from ice aggregates using the horizontally aligned oblate spheroid approximation. J. Appl. Meteor. Climatol., 51, 655–671, https://doi.org/10.1175/jamc-d-11-074.1.

    • Crossref
    • Export Citation
  • Hogan, R. J., R. Honeyager, J. Tyynelä, and S. Kneifel, 2017: Calculating the millimetre-wave scattering phase function of snowflakes using the self-similar Rayleigh–Gans approximation. Quart. J. Roy. Meteor. Soc., 143, 834844, https://doi.org/10.1002/qj.2968.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hou, A. Y., and Coauthors, 2014: The Global Precipitation Measurement mission. Bull. Amer. Meteor. Soc., 95, 701722, https://doi.org/10.1175/BAMS-D-13-00164.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., and Coauthors, 2017: The Olympic Mountains Experiment (OLYMPEX). Bull. Amer. Meteor. Soc., 98, 2167–2188, https://doi.org/10.1175/bams-d-16-0182.1.

    • Crossref
    • Export Citation
  • Huang, G. J., V. N. Bringi, A. J. Newman, G. Lee, D. Moisseev, and B. M. Notaroš, 2019: Dual-wavelength radar technique development for snow rate estimation: A case study from GCPEx. Atmos. Meas. Tech., 12, 14091427, https://doi.org/10.5194/amt-12-1409-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jackson, R. C., and Coauthors, 2012: The dependence of ice microphysics on aerosol concentration in arctic mixed-phase stratus clouds during ISDAC and M-PACE. J. Geophys. Res., 117, D15207, https://doi.org/10.1029/2012JD017668.

    • Search Google Scholar
    • Export Citation
  • Jensen, M. P., and Coauthors, 2016: The Midlatitude Continental Convective Clouds Experiment (MC3E). Bull. Amer. Meteor. Soc., 97, 1667–1686, https://doi.org/10.1175/bams-d-14-00228.1.

    • Crossref
    • Export Citation
  • Jiang, Z., M. Oue, J. Verlinde, E. E. Clothiaux, K. Aydin, G. Botta, and Y. Lu, 2017: What can we conclude about the real aspect ratios of ice particle aggregates from two-dimensional images? J. Appl. Meteor. Climatol., 56, 725734, https://doi.org/10.1175/JAMC-D-16-0248.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kneifel, S., M. S. Kulie, and R. Bennartz, 2011: A triple-frequency approach to retrieve microphysical snowfall parameters. J. Geophys. Res., 116, D11203, https://doi.org/10.1029/2010JD015430.

    • Search Google Scholar
    • Export Citation
  • Kneifel, S., A. von Lerber, J. Tiira, D. Moisseev, P. Kollias, and J. Leinonen, 2015: Observed relations between snowfall microphysics and triple-frequency radar measurements. J. Geophys. Res. Atmos., 120, 60346055, https://doi.org/10.1002/2015JD023156.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kollias, P., E. E. Clothiaux, M. A. Miller, B. A. Albrecht, G. L. Stephens, and T. P. Ackerman, 2007: Millimeter-wavelength radars: New frontier in atmospheric cloud and precipitation research. Bull. Amer. Meteor. Soc., 88, 16081624, https://doi.org/10.1175/BAMS-88-10-1608.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kulie, M. S., L. Milani, N. B. Wood, S. A. Tushaus, R. Bennartz, and T. S. L’Ecuyer, 2016: A shallow cumuliform snowfall census using spaceborne radar. J. Hydrometeor., 17, 12611279, https://doi.org/10.1175/JHM-D-15-0123.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kummerow, C., and Coauthors, 2000: The status of the Tropical Rainfall Measuring Mission (TRMM) after two years in orbit. J. Appl. Meteor., 39, 19651982, https://doi.org/10.1175/1520-0450(2001)040<1965:TSOTTR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leinonen, J., 2014: High-level interface to T-matrix scattering calculations: Architecture, capabilities and limitations. Opt. Express, 22, 1655, https://doi.org/10.1364/oe.22.001655.

    • Crossref
    • Export Citation
  • Leinonen, J., and W. Szyrmer, 2015: Radar signatures of snowflake riming: A modeling study. Earth Space Sci., 2, 346–358, https://doi.org/10.1002/2015ea000102.

    • Crossref
    • Export Citation
  • Leinonen, J., S. Kneifel, D. Moisseev, J. Tyynelä, S. Tanelli, and T. Nousiainen, 2012: Evidence of nonspheroidal behavior in millimeter-wavelength radar observations of snowfall. J. Geophys. Res., 117, D18205, https://doi.org/10.1029/2012JD017680.

    • Search Google Scholar
    • Export Citation
  • Leinonen, J., and Coauthors, 2018a: Retrieval of snowflake microphysical properties from multifrequency radar observations. Atmos. Meas. Tech., 11, 54715488, https://doi.org/10.5194/amt-11-5471-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leinonen, J., S. Kneifel, and R. J. Hogan, 2018b: Evaluation of the Rayleigh–Gans approximation for microwave scattering by rimed snowflakes. Quart. J. Roy. Meteor. Soc., 144, 7788, https://doi.org/10.1002/qj.3093.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, L., and Coauthors, 2016: The NASA High-Altitude Imaging Wind and Rain Airborne Profiler. IEEE Trans. Geosci. Remote Sens., 54, 298310, https://doi.org/10.1109/TGRS.2015.2456501.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, N., Z. Wang, X. Chen, and G. Austin, 2019: Studies of general precipitation features with TRMM PR data: An extensive overview. Remote Sens., 11, 80, https://doi.org/10.3390/rs11010080.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liao, L., R. Meneghini, L. Tian, and G. M. Heymsfield, 2008: Retrieval of snow and rain from combined X- and W-band airborne radar measurements. IEEE Trans. Geosci. Remote Sens., 46, 15141524, https://doi.org/10.1109/TGRS.2008.916079.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liao, L., R. Meneghini, A. Tokay, and L. F. Bliven, 2016: Retrieval of snow properties for Ku- and Ka-band dual-frequency radar. J. Appl. Meteor. Climatol., 55, 18451858, https://doi.org/10.1175/JAMC-D-15-0355.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, G., 2009: Deriving snow cloud characteristics from CloudSat observations. J. Geophys. Res., 113, D00A09, https://doi.org/10.1029/2007JD009766.

    • Search Google Scholar
    • Export Citation
  • Mason, S. L., C. J. Chiu, R. J. Hogan, D. Moisseev, and S. Kneifel, 2018: Retrievals of riming and snow density from vertically pointing Doppler radars. J. Geophys. Res. Atmos., 123, 13 80713 834, https://doi.org/10.1029/2018JD028603.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mason, S. L., R. J. Hogan, C. D. Westbrook, S. Kneifel, D. Moisseev, and L. von Terzi, 2019: The importance of particle size distribution and internal structure for triple-frequency radar retrievals of the morphology of snow. Atmos. Meas. Tech., 12, 4993–5018, https://doi.org/10.5194/amt-12-4993-2019.

    • Crossref
    • Export Citation
  • Matrosov, S. Y., 1998: A dual-wavelength radar method to measure snowfall rate. J. Appl. Meteor., 37, 15101521, https://doi.org/10.1175/1520-0450(1998)037<1510:ADWRMT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., 2007: Modeling backscatter properties of snowfall at millimeter wavelengths. J. Atmos. Sci., 64, 17271736, https://doi.org/10.1175/JAS3904.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., and A. J. Heymsfield, 2017: Empirical relations between size parameters of ice hydrometeor populations and radar reflectivity. J. Appl. Meteor. Climatol., 56, 24792488, https://doi.org/10.1175/JAMC-D-17-0076.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., J. Um, M. Freer, D. Baumgardner, G. L. Kok, and G. Mace, 2007: Importance of small ice crystals to cirrus properties: Observations from the Tropical Warm Pool International Cloud Experiment (TWP-ICE). Geophys. Res. Lett., 34, L13803, https://doi.org/10.1029/2007GL029865.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Milani, L., and Coauthors, 2018: CloudSat snowfall estimates over Antarctica and the Southern Ocean: An assessment of independent retrieval methodologies and multi-year snowfall analysis. Atmos. Res., 213, 121135, https://doi.org/10.1016/j.atmosres.2018.05.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mroz, K., A. Battaglia, T. J. Lang, S. Tanelli, and G. F. Sacco, 2018: Global Precipitation Measuring Dual-Frequency Precipitation Radar observations of hailstorm vertical structure: Current Capabilities and Drawbacks. J. Appl. Meteor. Climatol., 57, 2161–2178, https://doi.org/10.1175/jamc-d-18-0020.1.

    • Crossref
    • Export Citation
  • Ni, X., C. Liu, and E. Zipser, 2019: Ice microphysical properties near the tops of deep convective cores implied by the GPM dual-frequency radar observations. J. Atmos. Sci., 76, 2899–2917, https://doi.org/10.1175/jas-d-18-0243.1.

    • Crossref
    • Export Citation
  • Palerme, C., J. E. Kay, C. Genthon, T. L’Ecuyer, N. B. Wood, and C. Claud, 2014: How much snow falls on the Antarctic ice sheet? Cryosphere, 8, 15771587, https://doi.org/10.5194/tc-8-1577-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Palerme, C., C. Genthon, C. Claud, J. E. Kay, N. B. Wood, and T. L’Ecuyer, 2017: Evaluation of current and projected Antarctic precipitation in CMIP5 models. Climate Dyn., 48, 225239, https://doi.org/10.1007/s00382-016-3071-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petty, G. W., and W. Huang, 2010: Microwave backscatter and extinction by soft ice spheres and complex snow aggregates. J. Atmos. Sci., 67, 769787, https://doi.org/10.1175/2009JAS3146.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sadowy, G. A., A. C. Berkun, W. Chun, E. Im, and S. Durden, 2003: Development of an advanced airborne precipitation radar. Microwave J., 46, 8498.

    • Search Google Scholar
    • Export Citation
  • Seto, S., T. Iguchi, and T. Oki, 2013: The basic performance of a precipitation retrieval algorithm for the Global Precipitation Measurement mission’s single/dual-frequency radar measurements. IEEE Trans. Geosci. Remote Sens., 51, 52395251, https://doi.org/10.1109/TGRS.2012.2231686.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skofronick-Jackson, G., M. Kulie, L. Milani, S. J. Munchak, N. B. Wood, and V. Levizzani, 2019: Satellite estimation of falling snow: A Global Precipitation Measurement (GPM) Core Observatory perspective. J. Appl. Meteor. Climatol., 58, 14291448, https://doi.org/10.1175/JAMC-D-18-0124.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Souverijns, N., and Coauthors, 2018: Evaluation of the CloudSat surface snowfall product over Antarctica using ground-based precipitation radars. Cryosphere, 12, 37753789, https://doi.org/10.5194/tc-12-3775-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and Coauthors, 2004: The CloudSat mission and the A-Train: A new dimension of space-based observations of clouds and precipitation. Bull. Amer. Meteor. Soc., 83, 17711790, https://doi.org/10.1175/BAMS-83-12-1771.

    • Search Google Scholar
    • Export Citation
  • Tanelli, S., S. L. Durden, E. Im, K. S. Pak, D. G. Reinke, P. Partain, J. M. Haynes, and R. T. Marchand, 2008: CloudSat’s cloud profiling radar after two years in orbit: Performance, calibration, and processing. IEEE Trans. Geosci. Remote Sens., 46, 35603573, https://doi.org/10.1109/TGRS.2008.2002030.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tridon, F., and Coauthors, 2019: The microphysics of stratiform precipitation during OLYMPEX: Compatibility between triple-frequency radar and airborne in situ observations. J. Geophys. Res. Atmos., 124, 8764–8792, https://doi.org/10.1029/2018jd029858.

    • Crossref
    • Export Citation
  • Tyynelä, J., J. Leinonen, D. Moisseev, and T. Nousiainen, 2011: Radar backscattering from snowflakes: Comparison of fractal, aggregate, and soft spheroid models. J. Atmos. Oceanic Technol., 28, 13651372, https://doi.org/10.1175/JTECH-D-11-00004.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Um, J., G. M. McFarquhar, Y. P. Hong, S.-S. Lee, C. H. Jung, R. P. Lawson, and Q. Mo, 2015: Dimensions and aspect ratios of natural ice crystals. Atmos. Chem. Phys., 15, 39333956, https://doi.org/10.5194/acp-15-3933-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, C. R., and Coauthors, 2014: Describing the shape of raindrop size distributions using uncorrelated raindrop mass spectrum parameters. J. Appl. Meteor. Climatol., 53, 12821296, https://doi.org/10.1175/JAMC-D-13-076.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, N. B., T. S. L’Ecuyer, D. G. Vane, G. L. Stephens, and P. Partain, 2013: Level 2C snow profile process description and interface control document. JPL Doc., 21 pp., http://www.cloudsat.cira.colostate.edu/sites/default/files/products/files/2C-SNOW-PROFILE_PDICD.P_R04.20130210.pdf.

  • Wu, W., and G. M. McFarquhar, 2016: On the impacts of different definitions of maximum dimension for nonspherical particles recorded by 2D imaging probes. J. Atmos. Oceanic Technol., 33, 10571072, https://doi.org/10.1175/JTECH-D-15-0177.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yin, M., G. Liu, R. Honeyager, and F. J. Turk, 2017: Observed differences of triple-frequency radar signatures between snowflakes in stratiform and convective clouds. J. Quant. Spectrosc. Radiat. Transfer, 193, 1320, https://doi.org/10.1016/j.jqsrt.2017.02.017.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 221 221 32
Full Text Views 83 83 7
PDF Downloads 93 93 8

Demonstration of a Consistent Relationship between Dual-Frequency Reflectivity and the Mass-Weighted Mean Diameter in Measurements of Frozen Precipitation from GCPEX, OLYMPEX, and MC3E

View More View Less
  • 1 a Department of Earth and Environmental Sciences, Vanderbilt University, Nashville, Tennessee
  • | 2 b Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
  • | 3 c Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, Norman, Oklahoma
  • | 4 d School of Meteorology, University of Oklahoma, Norman, Oklahoma
  • | 5 e Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois
  • | 6 f Space Science and Engineering Center, University of Wisconsin–Madison, Madison, Wisconsin
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

The retrieval of the mass-weighted mean diameter (Dm) is a fundamental component of spaceborne precipitation retrievals. The Dual-Frequency Precipitation Radar (DPR) on the Global Precipitation Measurement (GPM) satellite is the first satellite to use dual-wavelength ratio measurements—the quotient of radar reflectivity factors (Z) measured at Ku and Ka wavelengths—to retrieve Dm. While it is established that DWR, being theoretically insensitive to changes in ice crystal mass and concentration, can provide a superior retrieval of Dm compared to Z-based retrievals, the benefits of this retrieval have yet to be directly observed or quantified. In this study, DWR–Dm and ZDm relationships are empirically generated from collocated airborne radar and in situ cloud particle probe measurements. Data are collected during nine intensive observation periods (IOPs) from three experiments representing different locations and times of year. Across IOPs with varying ice crystal concentrations, cloud temperatures, and storm types, ZDm relationships vary considerably while the DWR–Dm relationship remains consistent. This study confirms that a DWR–Dm relationship can provide a more accurate and consistent Dm retrieval than a ZDm relationship, quantified by a reduced overall RMSE (0.19 and 0.25 mm, respectively) and a reduced range of biases between experiments (0.11 and 0.32 mm, respectively).

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

This article is included in the Global Precipitation Measurement (GPM) special collection.

Corresponding author: George Duffy, george.s.duffy@gmail.com

Abstract

The retrieval of the mass-weighted mean diameter (Dm) is a fundamental component of spaceborne precipitation retrievals. The Dual-Frequency Precipitation Radar (DPR) on the Global Precipitation Measurement (GPM) satellite is the first satellite to use dual-wavelength ratio measurements—the quotient of radar reflectivity factors (Z) measured at Ku and Ka wavelengths—to retrieve Dm. While it is established that DWR, being theoretically insensitive to changes in ice crystal mass and concentration, can provide a superior retrieval of Dm compared to Z-based retrievals, the benefits of this retrieval have yet to be directly observed or quantified. In this study, DWR–Dm and ZDm relationships are empirically generated from collocated airborne radar and in situ cloud particle probe measurements. Data are collected during nine intensive observation periods (IOPs) from three experiments representing different locations and times of year. Across IOPs with varying ice crystal concentrations, cloud temperatures, and storm types, ZDm relationships vary considerably while the DWR–Dm relationship remains consistent. This study confirms that a DWR–Dm relationship can provide a more accurate and consistent Dm retrieval than a ZDm relationship, quantified by a reduced overall RMSE (0.19 and 0.25 mm, respectively) and a reduced range of biases between experiments (0.11 and 0.32 mm, respectively).

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

This article is included in the Global Precipitation Measurement (GPM) special collection.

Corresponding author: George Duffy, george.s.duffy@gmail.com

Supplementary Materials

    • Supplemental Materials (PDF 576.83 KB)
Save