• Bischoff, T., and T. Schneider, 2016: The equatorial energy balance, ITCZ position, and double-ITCZ bifurcations. J. Climate, 29, 29973013, https://doi.org/10.1175/JCLI-D-15-0328.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bolin, B., 1950: On the influence of the Earth’s orography on the general character of the westerlies. Tellus, 2, 184195, https://doi.org/10.3402/tellusa.v2i3.8547.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brayshaw, D. J., B. Hoskins, and M. Blackburn, 2009: The basic ingredients of the North Atlantic storm track. Part I: Land–sea contrast and orography. J. Atmos. Sci., 66, 25392558, https://doi.org/10.1175/2009JAS3078.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Caballero, R., 2007: Role of eddies in the interannual variability of Hadley cell strength. Geophys. Res. Lett., 34, L22705, https://doi.org/10.1029/2007GL030971.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charney, J. G., and A. Eliassen, 1949: A numerical method for predicting the perturbations of the middle latitude westerlies. Tellus, 1 (2), 3854, https://doi.org/10.3402/tellusa.v1i2.8500.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S., and K. E. Trenberth, 1988: Orographically forced planetary waves in the Northern Hemisphere winter: Steady state model with wave-coupled lower boundary formulation. J. Atmos. Sci., 45, 657681, https://doi.org/10.1175/1520-0469(1988)045<0657:OFPWIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, N. Y., and W. R. Boos, 2017: The influence of orographic Rossby and gravity waves on rainfall. Quart. J. Roy. Meteor. Soc., 143, 845851, https://doi.org/10.1002/qj.2969.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Conley, A. J., and Coauthors, 2012: Description of the NCAR Community Atmosphere Model (CAM 5.0). NCAR Tech. Note NCAR/TN-486+STR, 289 pp.

  • Cook, K. H., and I. M. Held, 1992: The stationary response to large-scale orography in a general circulation model and a linear model. J. Atmos. Sci., 49, 525539, https://doi.org/10.1175/1520-0469(1992)049<0525:TSRTLS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donohoe, A., K. C. Armour, G. H. Roe, D. S. Battisti, and L. Hahn, 2020: The partitioning of meridional heat transport from the last glacial maximum to CO2 quadrupling in coupled climate models. J. Climate, 33, 41414165, https://doi.org/10.1175/JCLI-D-19-0797.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Esler, J. G., L. M. Polvani, and R. A. Plumb, 2000: The effect of a Hadley circulation on the propagation and reflection of planetary waves in a simple one-layer model. J. Atmos. Sci., 57, 15361556, https://doi.org/10.1175/1520-0469(2000)057<1536:TEOAHC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garfinkel, C. I., I. White, E. P. Gerber, M. Jucker, and M. Erez, 2020: The building blocks of Northern Hemisphere wintertime stationary waves. J. Climate, 33, 56115633, https://doi.org/10.1175/JCLI-D-19-0181.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462, https://doi.org/10.1002/qj.49710644905.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grose, W. L., and B. J. Hoskins, 1979: On the influence of orography on large-scale atmospheric flow. J. Atmos. Sci., 36, 223234, https://doi.org/10.1175/1520-0469(1979)036<0223:OTIOOO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hahn, D. G., and S. Manabe, 1975: The role of mountains in the South Asian monsoon circulation. J. Atmos. Sci., 32, 15151541, https://doi.org/10.1175/1520-0469(1975)032<1515:TROMIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hayashi, Y. Y., and A. Sumi, 1986: The 30-40 day oscillations simulated in an “aqua planet” model. J. Meteor. Soc. Japan, 64, 451467, https://doi.org/10.2151/jmsj1965.64.4_451.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., 1983: Stationary and quasi-stationary eddies in the extratropical troposphere: Theory. Large-Scale Dynamical Processes in the Atmosphere, B. J. Hoskins and R. P. Pearce, Eds., Academic Press, 127–168.

  • Held, I. M., and P. J. Phillips, 1990: A barotropic model of the interaction between the Hadley cell and a Rossby wave. J. Atmos. Sci., 47, 856869, https://doi.org/10.1175/1520-0469(1990)047<0856:ABMOTI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., and M. Ting, 1990: Orographic versus thermal forcing of stationary waves: The importance of the mean low-level wind. J. Atmos. Sci., 47, 495500, https://doi.org/10.1175/1520-0469(1990)047<0495:OVTFOS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., M. Ting, and H. Wang, 2002: Northern winter stationary waves: Theory and modeling. J. Climate, 15, 21252144, https://doi.org/10.1175/1520-0442(2002)015<2125:NWSWTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holton, J. R., and G. J. Hakim, 2014: An Introduction to Dynamic Meteorology. Vol. 88. Academic Press, 535 pp.

  • Hoskins, B. J., and D. J. Karoly, 1981: The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38, 11791196, https://doi.org/10.1175/1520-0469(1981)038<1179:TSLROA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Källén, E., 1981: The nonlinear effects of orographic and momentum forcing in a low-order, barotropic model. J. Atmos. Sci., 38, 21502163, https://doi.org/10.1175/1520-0469(1981)038<2150:TNEOOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kasahara, A., 1966: The dynamical influence of orography on the large-scale motion of the atmosphere. J. Atmos. Sci., 23, 259271, https://doi.org/10.1175/1520-0469(1966)023<0259:TDIOOO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kasahara, A., and W. M. Washington, 1971: General circulation experiments with a six-layer NCAR model, including orography, cloudiness and surface temperature calculations. J. Atmos. Sci., 28, 657701, https://doi.org/10.1175/1520-0469(1971)028<0657:GCEWAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Killworth, P. D., and M. E. McIntyre, 1985: Do Rossby-wave critical layers absorb, reflect, or over-reflect? J. Fluid Mech., 161, 449492, https://doi.org/10.1017/S0022112085003019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, F., W. D. Collins, M. F. Wehner, and L. R. Leung, 2013: Hurricanes in an aquaplanet world: Implications of the impacts of external forcing and model horizontal resolution. J. Adv. Model. Earth Syst., 5, 134145, https://doi.org/10.1002/jame.20020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lutsko, N. J., and I. M. Held, 2016: The response of an idealized atmosphere to orographic forcing: Zonal versus meridional propagation. J. Atmos. Sci., 73, 37013718, https://doi.org/10.1175/JAS-D-16-0021.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manabe, S., and T. B. Terpstra, 1974: The effects of mountains on the general circulation of the atmosphere as identified by numerical experiments. J. Atmos. Sci., 31, 342, https://doi.org/10.1175/1520-0469(1974)031<0003:TEOMOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mishra, S. K., J. Srinivasan, and R. S. Nanjundiah, 2008: The impact of the time step on the intensity of ITCZ in an aquaplanet GCM. Mon. Wea. Rev., 136, 40774091, https://doi.org/10.1175/2008MWR2478.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mishra, S. K., M. A. Taylor, R. D. Nair, H. M. Tufo, and J. J. Tribbia, 2011a: Performance of the HOMME dynamical core in the aqua-planet configuration of NCAR CAM4: Equatorial waves. Ann. Geophys., 29, 221227, https://doi.org/10.5194/angeo-29-221-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mishra, S. K., M. A. Taylor, R. D. Nair, P. H. Lauritzen, H. M. Tufo, and J. J. Tribbia, 2011b: Evaluation of the HOMME dynamical core in the aquaplanet configuration of NCAR CAM4: Rainfall. J. Climate, 24, 40374055, https://doi.org/10.1175/2011JCLI3860.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nasuno, T., H. Tomita, S. Iga, H. Miura, and M. Satoh, 2008: Convectively coupled equatorial waves simulated on an aquaplanet in a global nonhydrostatic experiment. J. Atmos. Sci., 65, 12461265, https://doi.org/10.1175/2007JAS2395.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neale, R. B., and B. J. Hoskins, 2000: A standard test for AGCMs including their physical parametrizations: I: The proposal. Atmos. Sci. Lett., 1, 101107, https://doi.org/10.1006/asle.2000.0019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nigam, S., and E. DeWeaver, 2003: Stationary waves (orographic and thermally forced). Encyclopedia of Atmospheric Sciences, Vol. 2121, J. R. Holton, J. A. Pyle, and J. A. Curry, Eds., Academic Press, 2121–2137.

  • Park, H.-S., S.-P. Xie, and S.-W. Son, 2013: Poleward stationary eddy heat transport by the Tibetan Plateau and equatorward shift of westerlies during northern winter. J. Atmos. Sci., 70, 32883301, https://doi.org/10.1175/JAS-D-13-039.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, S., and C. S. Bretherton, 2009: The University of Washington shallow convection and moist turbulence schemes and their impact on climate simulations with the Community Atmosphere Model. J. Climate, 22, 34493469, https://doi.org/10.1175/2008JCLI2557.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Plumb, R. A., 1985: On the three-dimensional propagation of stationary waves. J. Atmos. Sci., 42, 217229, https://doi.org/10.1175/1520-0469(1985)042<0217:OTTDPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ringler, T. D., and K. H. Cook, 1995: Orographically induced stationary waves: Dependence on latitude. J. Atmos. Sci., 52, 25482560, https://doi.org/10.1175/1520-0469(1995)052<2548:OISWDO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ringler, T. D., and K. H. Cook, 1997: Factors controlling nonlinearity in mechanically forced stationary waves over orography. J. Atmos. Sci., 54, 26122629, https://doi.org/10.1175/1520-0469(1997)054<2612:FCNIMF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sardeshmukh, P. D., and B. J. Hoskins, 1988: The generation of global rotational flow by steady idealized tropical divergence. J. Atmos. Sci., 45, 12281251, https://doi.org/10.1175/1520-0469(1988)045<1228:TGOGRF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saulière, J., D. J. Brayshaw, B. Hoskins, and M. Blackburn, 2012: Further investigation of the impact of idealized continents and SST distributions on the Northern Hemisphere storm tracks. J. Atmos. Sci., 69, 840856, https://doi.org/10.1175/JAS-D-11-0113.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, T., 2006: The general circulation of the atmosphere. Annu. Rev. Earth Planet. Sci., 34, 655688, https://doi.org/10.1146/annurev.earth.34.031405.125144.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smagorinsky, J., 1953: The dynamical influence of large-scale heat sources and sinks on the quasi-stationary mean motions of the atmosphere. Quart. J. Roy. Meteor. Soc., 79, 342366, https://doi.org/10.1002/qj.49707934103.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tewari, K., S. K. Mishra, A. Dewan, and H. Ozawa, 2021a: Effects of Antarctic elevation on the atmospheric circulation. Theor. Appl. Climatol., 143, 14871499, https://doi.org/10.1007/s00704-020-03456-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tewari, K., S. K. Mishra, A. Dewan, G. Dogra, and H. Ozawa, 2021b: Influence of the height of Antarctic ice sheet on its climate. Polar Sci., 28, 100642, https://doi.org/10.1016/j.polar.2021.100642.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Valdes, P. J., and B. J. Hoskins, 1991: Nonlinear orographically forced planetary waves. J. Atmos. Sci., 48, 20892106, https://doi.org/10.1175/1520-0469(1991)048<2089:NOFPW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • White, R. H., D. S. Battisti, and G. H. Roe, 2017: Mongolian mountains matter most: Impacts of the latitude and height of Asian orography on Pacific wintertime atmospheric circulation. J. Climate, 30, 40654082, https://doi.org/10.1175/JCLI-D-16-0401.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wills, R. C., and T. Schneider, 2016: How stationary eddies shape changes in the hydrological cycle: Zonally asymmetric experiments in an idealized GCM. J. Climate, 29, 31613179, https://doi.org/10.1175/JCLI-D-15-0781.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wills, R. C., and T. Schneider, 2018: Mechanisms setting the strength of orographic Rossby waves across a wide range of climates in a moist idealized GCM. J. Climate, 31, 76797700, https://doi.org/10.1175/JCLI-D-17-0700.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., and N. A. McFarlane, 1995: Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian Climate Centre general circulation model. Atmos.–Ocean, 33, 407446, https://doi.org/10.1080/07055900.1995.9649539.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 283 283 26
Full Text Views 112 112 12
PDF Downloads 142 142 15

Response of the Atmosphere to Orographic Forcings: Insight from Idealized Simulations

View More View Less
  • 1 a Department of Applied Mechanics, IIT Delhi, New Delhi, India
  • | 2 b Centre for Atmospheric Sciences, IIT Delhi, New Delhi, India
  • | 3 c Indian Ocean Center, SOED, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
  • | 4 d School of Oceanography, Shanghai Jiaotong University, Shanghai, China
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Earth’s orography profoundly influences its climate and is a major reason behind the zonally asymmetric features observed in the atmospheric circulation. The response of the atmosphere to orographic forcing, when idealized aqua mountains are placed individually and in pairs (180° apart) at different latitudes, is investigated in the present study using a simplified general circulation model. The investigation reveals that the atmospheric response to orography is dependent on its latitudinal position: orographically triggered stationary waves in the midlatitudes are most energetic compared to the waves generated due to anomalous divergence in the tropics. The impact on precipitation is confined to the latitude of the orography when it is placed near the tropics, but when it is situated at higher latitudes, it also has a significant remote impact on the tropics. In general, the tropical mountains block the easterly flow, resulting in a weakening of the Hadley cells and a local reduction in the total poleward flux transport by the stationary eddies. On the other hand, the midlatitudinal orography triggers planetary-scale Rossby waves and enhances the poleward flux transport by stationary eddies. The twin mountains experiments, which are performed by placing orography in pairs at different latitudes, show that the energy fluxes, stationary wave, and precipitation pattern are not merely the linear additive sum of individual orographic responses at these latitudes. The nonlinearity in a diagnostic sense is a product interaction of flow between the two mountains, which depends on the background flow, the separation distance between mountains, and wind shear worldwide.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Anupam Dewan, adewan@am.iitd.ac.in

Abstract

Earth’s orography profoundly influences its climate and is a major reason behind the zonally asymmetric features observed in the atmospheric circulation. The response of the atmosphere to orographic forcing, when idealized aqua mountains are placed individually and in pairs (180° apart) at different latitudes, is investigated in the present study using a simplified general circulation model. The investigation reveals that the atmospheric response to orography is dependent on its latitudinal position: orographically triggered stationary waves in the midlatitudes are most energetic compared to the waves generated due to anomalous divergence in the tropics. The impact on precipitation is confined to the latitude of the orography when it is placed near the tropics, but when it is situated at higher latitudes, it also has a significant remote impact on the tropics. In general, the tropical mountains block the easterly flow, resulting in a weakening of the Hadley cells and a local reduction in the total poleward flux transport by the stationary eddies. On the other hand, the midlatitudinal orography triggers planetary-scale Rossby waves and enhances the poleward flux transport by stationary eddies. The twin mountains experiments, which are performed by placing orography in pairs at different latitudes, show that the energy fluxes, stationary wave, and precipitation pattern are not merely the linear additive sum of individual orographic responses at these latitudes. The nonlinearity in a diagnostic sense is a product interaction of flow between the two mountains, which depends on the background flow, the separation distance between mountains, and wind shear worldwide.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Anupam Dewan, adewan@am.iitd.ac.in

Supplementary Materials

    • Supplemental Materials (PDF 521.85 KB)
Save