Linking Warm Arctic Winters, Rossby Waves, and Cold Spells: An Idealized Numerical Study

Emilien Jolly aLMD/IPSL, ENS, PSL Université, École Polytechnique, Institut Polytechnique de Paris, Sorbonne Université, CNRS, Paris, France

Search for other papers by Emilien Jolly in
Current site
Google Scholar
PubMed
Close
,
Fabio D’Andrea aLMD/IPSL, ENS, PSL Université, École Polytechnique, Institut Polytechnique de Paris, Sorbonne Université, CNRS, Paris, France

Search for other papers by Fabio D’Andrea in
Current site
Google Scholar
PubMed
Close
,
Gwendal Rivière aLMD/IPSL, ENS, PSL Université, École Polytechnique, Institut Polytechnique de Paris, Sorbonne Université, CNRS, Paris, France

Search for other papers by Gwendal Rivière in
Current site
Google Scholar
PubMed
Close
, and
Sebastien Fromang bLaboratoire des Sciences du Climat et de l’Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette, France

Search for other papers by Sebastien Fromang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The changes of midlatitude Rossby waves and cold extreme temperature events (cold spells) during warm Arctic winters are analyzed using a dry three-level quasigeostrophic model on the sphere. Two long-term simulations are compared: the first run has the observed wintertime climatology, while the second run includes the composite of the global anomalies associated with the six hottest Arctic winters. A spectral analysis shows a large increase in wave amplitude for near-zero and westward phase speeds and a more moderate decrease for high eastward phase speeds. The increase in low-frequency variability (periods greater than a week) associated with the power shift to slower waves is largely responsible for an increase in midlatitude long-lasting cold spells. In midlatitude regions, in the presence of a mean warming, that increase in low-frequency variance compensates the increase of the mean temperature, resulting at places in a frequency of cold spells that remains by and large unaltered. In presence of mean cooling, both the increase in variance and the decrease in the mean temperature participate in an increased frequency of cold spells. Sensitivity experiments show that the power shift to slower waves is mainly due to the tropical anomalies that developed during those particular winters and less importantly to changes in the background flow at higher latitudes associated with the Arctic amplification pattern.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Emilien Jolly, ejolly@lmd.ens.fr

Abstract

The changes of midlatitude Rossby waves and cold extreme temperature events (cold spells) during warm Arctic winters are analyzed using a dry three-level quasigeostrophic model on the sphere. Two long-term simulations are compared: the first run has the observed wintertime climatology, while the second run includes the composite of the global anomalies associated with the six hottest Arctic winters. A spectral analysis shows a large increase in wave amplitude for near-zero and westward phase speeds and a more moderate decrease for high eastward phase speeds. The increase in low-frequency variability (periods greater than a week) associated with the power shift to slower waves is largely responsible for an increase in midlatitude long-lasting cold spells. In midlatitude regions, in the presence of a mean warming, that increase in low-frequency variance compensates the increase of the mean temperature, resulting at places in a frequency of cold spells that remains by and large unaltered. In presence of mean cooling, both the increase in variance and the decrease in the mean temperature participate in an increased frequency of cold spells. Sensitivity experiments show that the power shift to slower waves is mainly due to the tropical anomalies that developed during those particular winters and less importantly to changes in the background flow at higher latitudes associated with the Arctic amplification pattern.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Emilien Jolly, ejolly@lmd.ens.fr
Save
  • Bader, J., M. D. S. Mesquita, K. I. Hodges, N. Keenlyside, S. Osterhus, and M. Miles, 2011: A review on Northern Hemisphere sea-ice, storminess and the North Atlantic oscillation: Observations and projected changes. Atmos. Res., 101, 809834, https://doi.org/10.1016/j.atmosres.2011.04.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baggett, C., and S. Lee, 2017: An identification of the mechanisms that lead to Arctic warming during planetary-scale and synoptic-scale wave life cycles. J. Atmos. Sci., 74, 18591877, https://doi.org/10.1175/JAS-D-16-0156.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnes, E. A., 2013: Revisiting the evidence linking Arctic amplification to extreme weather in midlatitudes. Geophys. Res. Lett., 40, 47344739, https://doi.org/10.1002/grl.50880.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnes, E. A., and J. A. Screen, 2015: The impact of Arctic warming on the midlatitude jet-stream: Can it? Has it? Will it? Wiley Interdiscip. Rev.: Climate Change, 6, 277286, https://doi.org/10.1002/wcc.337.

    • Search Google Scholar
    • Export Citation
  • Barnes, E. A., E. Dunn-Sigouin, G. Masato, and T. Woollings, 2014: Exploring recent trends in Northern Hemisphere blocking. Geophys. Res. Lett., 41, 638644, https://doi.org/10.1002/2013GL058745.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Binder, H., M. Boettcher, C. M. Grams, H. Joos, S. Pfahl, and H. Wernli, 2017: Exceptional air mass transport and dynamical drivers of an extreme wintertime Arctic warm event. Geophys. Res. Lett., 44, 1202612036, https://doi.org/10.1002/2017GL075841.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buehler, T., C. C. Raible, and T. F. Stocker, 2011: The relationship of winter season North Atlantic blocking frequencies to extreme cold and dry spells in the ERA-40. Tellus, 63A, 212222, https://doi.org/10.1111/j.1600-0870.2010.00492.x.

    • Search Google Scholar
    • Export Citation
  • Butler, A. H., D. W. J. Thompson, and R. Heikes, 2010: The steady-state atmospheric circulation response to climate change–like thermal forcings in a simple general circulation model. J. Climate, 23, 34743496, https://doi.org/10.1175/2010JCLI3228.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cattiaux, J., R. Vautard, C. Cassou, P. Yiou, V. Masson-Delmotte, and F. Codron, 2010: Winter 2010 in Europe: A cold extreme in a warming climate. Geophys. Res. Lett., 37, L20704, https://doi.org/10.1029/2010GL044613.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cattiaux, J., Y. Peings, D. Saint-Martin, N. Trou-Kechout, and S. J. Vavrus, 2016: Sinuosity of midlatitude atmospheric flow in a warming world. Geophys. Res. Lett., 43, 82598268, https://doi.org/10.1002/2016GL070309.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, J., 2016: An observational analysis: Tropical relative to Arctic influence on midlatitude weather in the era of Arctic amplification. Geophys. Res. Lett., 43, 52875294, https://doi.org/10.1002/2016GL069102.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, J., J. Foster, M. Barlow, K. Saito, and J. Jones, 2010: Winter 2009–2010: A case study of an extreme Arctic oscillation event. Geophys. Res. Lett., 37, L17707, https://doi.org/10.1029/2010GL044256.

    • Search Google Scholar
    • Export Citation
  • Cohen, J., J. C. Furtado, M. Barlow, V. A. Alexeev, and J. E. Cherry, 2012a: Arctic warming, increasing snow cover and widespread boreal winter cooling. Environ. Res. Lett., 7, 014007, https://doi.org/10.1088/1748-9326/7/1/014007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, J., J. C. Furtado, M. Barlow, V. A. Alexeev, and J. E. Cherry, 2012b: Asymmetric seasonal temperature trends. Geophys. Res. Lett., 39, L04705, https://doi.org/10.1029/2011GL050582.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, J., and Coauthors, 2014: Recent Arctic amplification and extreme mid-latitude weather. Nat. Geosci., 7, 627637, https://doi.org/10.1038/ngeo2234.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, J., and Coauthors, 2018: Arctic change and possible influence on mid-latitude climate and weather. U.S. CLIVAR Rep., 45 pp.

  • Cohen, J., and Coauthors, 2020: Divergent consensuses on Arctic amplification influence on midlatitude severe winter weather. Nat. Climate Change, 10, 2029, https://doi.org/10.1038/s41558-019-0662-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Corti, S., A. Giannini, S. Tibaldi, and F. Molteni, 1997: Patterns of low-frequency variability in a three-level quasi-geostrophic model. Climate Dyn., 13, 883904, https://doi.org/10.1007/s003820050203.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coumou, D., V. Petoukhov, S. Rahmstorf, S. Petri, and H. J. Schellnhuber, 2014: Quasi-resonant circulation regimes and hemispheric synchronization of extreme weather in boreal summer. Proc. Natl. Acad. Sci. USA, 111, 12 33112 336, https://doi.org/10.1073/pnas.1412797111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coumou, D., J. Lehmann, and J. Beckmann, 2015: The weakening summer circulation in the Northern Hemisphere mid-latitudes. Science, 348, 324327, https://doi.org/10.1126/science.1261768.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’Andrea, F., and R. Vautard, 2000: Reducing systematic errors by empirically correcting model errors. Tellus, 52A, 2141, https://doi.org/10.3402/tellusa.v52i1.12251.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’Andrea, F., and R. Vautard, 2001: Extratropical low-frequency variability as a low dimensional problem I: A simplified model. Quart. J. Roy. Meteor. Soc., 127, 13571374, https://doi.org/10.1002/qj.49712757413.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davini, P., and F. D’Andrea, 2020: From CMIP3 to CMIP6: Northern Hemisphere atmospheric blocking simulation in present and future climate. J. Climate, 33, 10 02110 038, https://doi.org/10.1175/JCLI-D-19-0862.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davini, P., C. Cagnazzo, S. Gualdi, and A. Navarra, 2012: Bidimensional diagnostics, variability, and trends of Northern Hemisphere blocking. J. Climate, 25, 64966509, https://doi.org/10.1175/JCLI-D-12-00032.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dell’Aquila, A., V. Lucarini, P. M. Ruti, and S. Calmanti, 2005: Hayashi spectra of the Northern Hemisphere mid-latitude atmospheric variability in the NCEP–NCAR and ECMWF reanalyses. Climate Dyn., 25, 639652, https://doi.org/10.1007/s00382-005-0048-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Di Capua, G., and D. Coumou, 2016: Changes in meandering of the Northern Hemisphere circulation. Environ. Res. Lett., 11, 094028, https://doi.org/10.1088/1748-9326/11/9/094028.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drouard, M., G. Rivière, and P. Arbogast, 2013: The North Atlantic Oscillation response to large-scale atmospheric anomalies in the northeastern Pacific. J. Atmos. Sci., 70, 28542874, https://doi.org/10.1175/JAS-D-12-0351.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fletcher, T., L. Warden, J. Sinninghe-Damste, K. J. Brown, N. Rybcynski, J. Gosse, and A. Ballantyne, 2019: Evidence for fire in the Pliocene Arctic in response to amplified temperature. Climate Past, 15, 10631081, https://doi.org/10.5194/cp-15-1063-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Francis, J. A., and S. J. Vavrus, 2012: Evidence linking Arctic amplification to extreme weather in mid-latitudes. Geophys. Res. Lett., 39, L06801, https://doi.org/10.1029/2012GL051000.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fromang, S., and G. Rivière, 2020: The effect of the Madden–Julian oscillation on the North Atlantic Oscillation using idealized numerical experiments. J. Atmos. Sci., 77, 16131635, https://doi.org/10.1175/JAS-D-19-0178.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, Y., L. R. Leung, J. Lu, and G. Masato, 2015: Persistent cold air outbreaks over North America in a warming climate. Environ. Res. Lett., 10, 044001, https://doi.org/10.1088/1748-9326/10/4/044001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gong, T., S. B. Feldstein, and S. Lee, 2017: The role of downward infrared radiation in the recent Arctic winter warming trend. J. Climate, 30, 49374949, https://doi.org/10.1175/JCLI-D-16-0180.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gong, T., S. B. Feldstein, and S. Lee, 2020: Rossby wave propagation from the Arctic into midlatitudes: Does it arise from in-situ latent heating or a trans-Arctic wave train? J. Climate, 33, 36193633, https://doi.org/10.1175/JCLI-D-18-0780.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Graversen, R. G., and M. Wang, 2009: Polar amplification in a coupled climate model with locked albedo. Climate Dyn., 33, 629643, https://doi.org/10.1007/s00382-009-0535-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grotjahn, R., and Coauthors, 2016: North American extreme temperature events and related large scale meteorological patterns: A review of statistical methods, dynamics, modeling and trends. Climate Dyn., 46, 11511184, https://doi.org/10.1007/s00382-015-2638-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harnik, N., G. Messori, R. Caballero, and S. B. Feldstein, 2016: The circumglobal North American wave pattern and its relation to cold events in eastern North America. Geophys. Res. Lett., 43, 1101511023, https://doi.org/10.1002/2016GL070760.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hassanzadeh, P., Z. Kuang, and B. F. Farrell, 2014: Responses of midlatitude blocks and wave amplitude to changes in the meridional temperature gradient in an idealized dry GCM. Geophys. Res. Lett., 41, 52235232, https://doi.org/10.1002/2014GL060764.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hayashi, Y., 1971: A generalized method of resolving disturbances into progressive and retrogressive waves by space Fourier and time cross-spectral analyses. J. Meteor. Soc. Japan, 49, 125128, https://doi.org/10.2151/jmsj1965.49.2_125.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hayashi, Y., 1979: A generalized method of resolving transient disturbances into standing and traveling waves by space-time spectral analysis. J. Atmos. Sci., 36, 10171029, https://doi.org/10.1175/1520-0469(1979)036<1017:AGMORT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hayashi, Y., 1982: Space-time spectral analysis and its applications to atmospheric waves. J. Meteor. Soc. Japan, 60, 156171, https://doi.org/10.2151/jmsj1965.60.1_156.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., 1983: Stationary and quasi-stationary eddies in the extratropical troposphere: Theory. Large-Scale Dynamical Processes in the Atmosphere, R. P. Pearce and B. J. Hoskins, Eds., Academic Press, 127–168.

  • Hell, M. C., T. Schneider, and C. Li, 2020: Atmospheric circulation response to short-term Arctic warming in an idealized model. J. Atmos. Sci., 77, 531549, https://doi.org/10.1175/JAS-D-19-0133.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 2004: An Introduction to Dynamic Meteorology. 4th ed. International Geophysics Series, Elsevier, 535 pp.

  • Honda, M., J. Inoue, and S. Yamane, 2009: Influence of low Arctic sea-ice minima on anomalously cold Eurasian winters. Geophys. Res. Lett., 36, L08707, https://doi.org/10.1029/2008GL037079.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and D. J. Karoly, 1981: The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38, 11791196, https://doi.org/10.1175/1520-0469(1981)038<1179:TSLROA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and T. Ambrizzi, 1993: Rossby wave propagation on a realistic longitudinally varying flow. J. Atmos. Sci., 50, 16611671, https://doi.org/10.1175/1520-0469(1993)050<1661:RWPOAR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and T. Woollings, 2015: Persistent extratropical regimes and climate extremes. Curr. Climate Change Rep., 1, 115124, https://doi.org/10.1007/s40641-015-0020-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., 1995: Decadal trends in the North Atlantic Oscillation: Regional temperatures and precipitation. Science, 269, 676679, https://doi.org/10.1126/science.269.5224.676.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Inoue, J., and M. E. Hori, 2011: Arctic cyclogenesis at the marginal ice zone: A contributory mechanism for the temperature amplification? Geophys. Res. Lett., 38, L12502, https://doi.org/10.1029/2011GL047696.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kug, J.-S., J.-H. Jeong, Y.-S. Jang, B.-M. Kim, C. K. Folland, S.-K. Min, and S.-W. Son, 2015: Two distinct influences of Arctic warming on cold winters over North America and East Asia. Nat. Geosci., 8, 759762, https://doi.org/10.1038/ngeo2517.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, M.-Y., C.-C. Hong, and H.-H. Hsu, 2015: Compounding effects of warm sea surface temperature and reduced sea ice on the extreme circulation over the extratropical North Pacific and North America during the 2013–2014 boreal winter. Geophys. Res. Lett., 42, 16121618, https://doi.org/10.1002/2014GL062956.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, S., T. Gong, N. Johnson, S. B. Feldstein, and D. Polland, 2011: On the possible link between tropical convection and the Northern Hemisphere Arctic surface air temperature change between 1958 and 2001. J. Climate, 24, 43504367, https://doi.org/10.1175/2011JCLI4003.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, S., T. Gong, S. B. Feldstein, J. A. Screen, and I. Simmonds, 2017: Revisiting the cause of the 1989–2009 Arctic surface warming using the surface energy budget: Downward infrared radiation dominates the surface fluxes. Geophys. Res. Lett., 44, 10 65410 661, https://doi.org/10.1002/2017GL075375.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, J., J. A. Curry, H. Wang, M. Song, and R. M. Horton, 2012: Impact of declining Arctic sea ice on winter snowfall. Proc. Natl. Acad. Sci. USA, 109, 40744079, https://doi.org/10.1073/pnas.1114910109.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, J., and M. Cai, 2009: Seasonality of polar surface warming amplification in climate simulations. Geophys. Res. Lett., 36, L16704, https://doi.org/10.1029/2009GL040133.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mann, M. E., S. Rahmstorf, K. Kornhuber, B. A. Steinman, S. K. Miller, S. Petri, and D. Coumou, 2018: Projected changes in persistent extreme summer weather events: The role of quasi-resonant amplification. Sci. Adv., 4, eaat3272, https://doi.org/10.1126/sciadv.aat3272.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J., and F. Molteni, 1993: Toward a dynamical understanding of planetary-scale flow regimes. J. Atmos. Sci., 50, 17921818, https://doi.org/10.1175/1520-0469(1993)050<1792:TADUOP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Masato, G., B. J. Hoskins, and T. Woollings, 2013: Winter and summer Northern Hemisphere blocking in CMIP5 models. J. Climate, 26, 70447059, https://doi.org/10.1175/JCLI-D-12-00466.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Messori, G., R. Caballero, and M. Gaetani, 2016: On cold spells in North America and storminess in western Europe. Geophys. Res. Lett., 43, 66206628, https://doi.org/10.1002/2016GL069392.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Messori, G., C. Woods, and R. Caballero, 2018: On the drivers of wintertime temperature extremes in the high Arctic. J. Climate, 31, 15971618, https://doi.org/10.1175/JCLI-D-17-0386.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mori, M., M. Watanabe, H. Shiogama, J. Inoue, and M. Kimoto, 2014: Robust Arctic sea-ice influence on the frequent Eurasian cold winters in past decades. Nat. Geosci., 7, 869873, https://doi.org/10.1038/ngeo2277.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakamura, T., K. Yamazaki, K. Iwamoto, M. Honda, Y. Miyoshi, Y. Ogawa, and J. Ukita, 2015: A negative phase shift of the winter AO/NAO due to the recent Arctic sea-ice reduction in late autumn. J. Geophys. Res. Atmos., 120, 32093227, https://doi.org/10.1002/2014JD022848.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Overland, J. E., and M. Wang, 2005: The Arctic climate paradox: The recent decrease of the Arctic Oscillation. Geophys. Res. Lett., 32, L06701, https://doi.org/10.1029/2004GL021752.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Overland, J. E., K. R. Wood, and M. Wang, 2011: Warm Arctic–cold continents: Climate impacts of the newly open Arctic Sea. Polar Res., 30, 15787, https://doi.org/10.3402/polar.v30i0.15787.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peings, Y., and G. Magnusdottir, 2014: Response of the wintertime Northern Hemisphere atmospheric circulation to current and projected Arctic sea ice decline: A numerical study with CAM5. J. Climate, 27, 244264, https://doi.org/10.1175/JCLI-D-13-00272.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petoukhov, V., and V. A. Semenov, 2010: A link between reduced Barents-Kara sea ice and cold winter extremes over northern continents. J. Geophys. Res., 115, D21111, https://doi.org/10.1029/2009JD013568.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pithan, F., and T. Mauritsen, 2014: Arctic amplification dominated by temperature feedbacks in contemporary climate models. Nat. Geosci., 7, 181184, https://doi.org/10.1038/ngeo2071.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riboldi, J., F. Lott, F. d’Andrea, and G. Rivière, 2020: On the linkage between Rossby wave phase speed, atmospheric blocking, and Arctic amplification. Geophys. Res. Lett., 47, e2020GL087796, https://doi.org/10.1029/2020GL087796.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rinke, A., M. Maturilli, R. M. Graham, H. Matthes, D. Handorf, L. Cohen, S. R. Hudson, and J. C. Moore, 2017: Extreme cyclone events in the Arctic: Wintertime variability and trends. Environ. Res. Lett., 12, 094006, https://doi.org/10.1088/1748-9326/aa7def.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rivière, G., 2011: A dynamical interpretation of the poleward shift of the jet streams in global warming scenarios. J. Atmos. Sci., 68, 12531272, https://doi.org/10.1175/2011JAS3641.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rivière, G., and M. Drouard, 2015: Understanding the contrasting North Atlantic Oscillation anomalies of the winters of 2010 and 2014. Geophys. Res. Lett., 42, 68686875, https://doi.org/10.1002/2015GL065493.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robert, L., G. Rivière, and F. Codron, 2019: Effect of upper- and lower-level baroclinicity on the persistence of the leading mode of midlatitude jet variability. J. Atmos. Sci., 76, 155169, https://doi.org/10.1175/JAS-D-18-0010.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ronalds, B., E. Barnes, and P. Hassanzadeh, 2018: A barotropic mechanism for the response of jet stream variability to Arctic amplification and sea ice loss. J. Climate, 31, 70697085, https://doi.org/10.1175/JCLI-D-17-0778.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Santer, B. D., and Coauthors, 2018: Consistency of modeled and observed temperature trends in the tropical troposphere. Climate Modelling: Philosophical and Conceptual Issues, E. A. Lloyd and E. Winsberg, Eds., Palgrave Macmillan, 85–136, https://doi.org/10.1007/978-3-319-65058-6_5.

    • Crossref
    • Export Citation
  • Schneider, T., T. Bischoff, and H. Płotka, 2015: Physics of changes in synoptic midlatitude temperature variability. J. Climate, 28, 23122331, https://doi.org/10.1175/JCLI-D-14-00632.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Screen, J. A., 2014: Arctic amplification decreases temperature variance in northern mid- to high-latitudes. Nat. Climate Change, 4, 577582, https://doi.org/10.1038/nclimate2268.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Screen, J. A., and I. Simmonds, 2010: The central role of diminishing sea ice in recent Arctic temperature amplification. Nature, 464, 13341337, https://doi.org/10.1038/nature09051.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Screen, J. A., and I. Simmonds, 2013: Exploring links between Arctic amplification and mid-latitude weather. Geophys. Res. Lett., 40, 959964, https://doi.org/10.1002/grl.50174.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., and R. Barry, 2011: Processes and impacts of Arctic amplification: A research synthesis. Global Planet. Change, 77, 8596, https://doi.org/10.1016/j.gloplacha.2011.03.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., A. P. Barrett, J. C. Stroeve, D. N. Kindig, and M. M. Holland, 2009: The emergence of surface-based Arctic amplification. Cryosphere, 3, 1119, https://doi.org/10.5194/tc-3-11-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shaw, T. A., and Coauthors, 2016: Storm track processes and the opposing influences of climate change. Nat. Geosci., 9, 656664, https://doi.org/10.1038/ngeo2783.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, L., J. Perlwitz, and M. Hoerling, 2016: What caused the recent “warm Arctic, cold continents” trend pattern in winter temperatures? Geophys. Res. Lett., 43, 53455352, https://doi.org/10.1002/2016GL069024.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tamarin-Brodsky, T., K. Hodges, B. J. Hoskins, and T. G. Shepherd, 2019: A dynamical perspective on atmospheric temperature variability and its response to climate change. J. Climate, 32, 17071724, https://doi.org/10.1175/JCLI-D-18-0462.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and J. M. Wallace, 1998: The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys. Res. Lett., 25, 12971300, https://doi.org/10.1029/98GL00950.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., I. M. Held, D. W. J. Thompson, K. E. Trenberth, and J. E. Walsh, 2014: Global warming and winter weather. Science, 343, 729730, https://doi.org/10.1126/science.343.6172.729.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woods, C., and R. Caballero, 2016: The role of moist intrusions in winter Arctic warming and sea ice decline. J. Climate, 29, 44734485, https://doi.org/10.1175/JCLI-D-15-0773.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, X.-Y., X. Yuan, and M. Ting, 2016: Dynamical link between the Barents–Kara sea ice and the Arctic Oscillation. J. Climate, 29, 51035122, https://doi.org/10.1175/JCLI-D-15-0669.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yiou, P., and M. Nogaj, 2004: Extreme climatic events and weather regimes over the North Atlantic: When and where? Geophys. Res. Lett., 31, L07202, https://doi.org/10.1029/2003GL019119.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 443 0 0
Full Text Views 864 439 122
PDF Downloads 655 224 16